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CHAPTER 1. INTRODUCTION 

Nondestructive evaluation (NDE) is an interdisciplinary field whose primary task 

is to measure material and flaw parameters and relate these parameters to information 

which is useful in an engineering context. In general, the NDE problem is to detect 

and characterize defects in industrial parts without destroying them. A general model 

for the NDE problem is indicated in Figure 1.1. The device-under-test, or sample, is 

a physical object possibly containing one or more defects. Energy is introduced into 

the sample by the source. This energy interacts with the structure of the material 

and is observed by the detector. The goal of nondestructive evaluation is to analyze 

the detected energy to derive quantitative information about the structure of any 

flaws or defects present in the sample. A prior knowledge about the energy source, 

material structure, and detector response is the key to this analysis. Nearly all forms 

of known energy can be used for this purpose including acoustic waves (ultrasonic 

and acoustic emission), electromagnetic radiation (microwave, eddy currents, optics. 

X-rays, and gamma rays), neutrons, and thermal waves. Of these, ultrasonic energy 

is one of the most widely used because (1) it can be inexpensively generated and 

detected, (2) it can propagate deeply into the interior of many structures without 

excessive attenuation, and (3) the return signals have sufficient information-carrying 

capacity to determine important failure-related characteristics of the flaws or material 
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Energy Source 

Sample 

Energy Detector 

Analysis 

Figure 1.1: General model for NDE inspection 

(Thompson and Thompson, 1985). 

Overview of Ultrasonic Testing 

Ultrasonics is a branch of acoustics dealing with frequencies generally beyond 

the audible limit. For industrial applications, ultrasonic testing has the advantages 

of (1) high sensitivity permitting detection of minute discontinuities, (2) good pene­

trating power allowing examination of extremely thick sections, (3) accuracy in the 

measurement of discontinuity position and estimation of discontinuity size, (4) fast 

response permitting rapid and automated testing, and (5) need for access to only 

one surface of the test object. The primary disadvantage of ultrasonic testing is 

that it is adversely affected by (1) unfavorable test object geometry (size, contour, 

surface roughness, complexity and discontinuity orientation) and (2) undesirable in­

ternal structure (grain size, structure porosity, inclusion content or fine, dispersed 
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precipitates) (Birks et ai, 1991). 

The utilization of ultrasonic waves as a means of nondestructive testing occurred 

in the late 1920s. Developments since the 1930s have made ultrasonics one of the 

most widely used nondestructive testing techniques. The rapid development of early 

ultrasonic NDE was aided by a contemporary growth of electronic instrumentation 

and technology. While the ultrasonic techniques have greatly progressed, the need 

to extract exact data from ultrasonics has led to the development of more quantita­

tive testing techniques. These include the signal processing techniques which have 

significantly advanced the state of the art of nondestructive evaluation and testing 

recently. Much of the progress in recent ultrasonic signal processing has been cen­

tered on the application of digital signal processing, already successfully applied in 

other areas such as radar, sonar and geophysics, in order to enhance the capability 

of conventional NDE. The specific goals of digital signal processing in NDE are (1) 

to improve inspection reliability, (2) to improve flaw detection, (3) to improve flaw 

characterization, and (4) to generate information about material properties to assess 

the remaining life of a structure. Advanced signal processing techniques are needed 

to achieve these objectives (Chen, 1988). 

Ultrasonic testing is typically performed in two ways. A beam of ultrasonic 

energy is directed into the test object and (1) the energy transmitted through it is 

measured (through-transmission method), or (2) energy reflected from discontinu­

ities in the object is measured (pulse-echo method). A basic ultrasonic pulse-echo 

measurement system is shown in Figure 1.2. In this common system configuration, 

an electrical waveform generated by the pulser is applied to the transmitting trans­

ducer. Conversion of the electrical energy into mechanical energy occurs within the 
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Figure 1.2: Basic ultrasonic test setup 
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transducer, producing an ultrasonic wave. As the wave propagates through the test 

material, interactions of the ultrasonic energy with the material alter the amplitude, 

phase, and direction of the wave. A receiving transducer intercepts a portion of this 

ultrasonic energy and conversion occurs from mechanical to electrical energy. Because 

the electrical signal is usually small, an ampHfier is used to increase its amplitude. 

The amplified electrical signal is digitized, displayed, and stored for analysis by a 

computer. 

A reasonable model of the ultrasonic measurement system was proposed by Fred­

erick and Seydel (1973). They considered each component of the system as a linear 

time-invariant (LTI) system. Although such an assumption may not be always ap­

propriate, it provides a good basis for assessing the performance of the system com­

ponents (Fitting and Adler, 1981). The behavior of an LTI system is completely 

described by its impulse response (in the time domain) or its frequency response (in 

the frequency domain) (Oppenheim and Schafer, 1989). These two descriptions of 

system are equivalent. Figure 1.3 is a block diagram of an ultrasonic test modeled 

as an LTI system. In general, the time-domain representation of the signal is the 

one that is monitored. The analysis subsystem provides the transformation to the 

frequency domain. The independent variable inside the test material through which 

aji ultrasonic wave propagates is distance (2). Distance may be converted to time if 

the velocity of wave travel is known. The measured signal by the receiver, y{t), is 

represented in the time domain cis 

y { t )  =  x { t )  *  t i { t )  *  P I  { t )  *  h { t )  * P 2 { t )  * t 2 { t ) ,  (1.1) 

where * represents convolution. In Equation (1.1), x { t )  is the electrical impulse 

driving the transducer, <i(i) the transmitting transducer impulse response, pi(i) the 
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Figure 1.3: Block diagram of an ultrasonic test modeled as an LTI system 
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forward propagation path impulse response, h { t )  the impulse response of the test 

material, P2{i) the return propagation path impulse response, <2(0 the receiving 

transducer impulse response. The LTI model can be expressed in the frequency 

domain as 

Yiu) = X{u)TI{U;)PI{U;)H{U;)P2HT2{U;), (1.2) 

where convolution becomes simple multiplication, and K(a;), -X'(a;), Ti{uj), 

H { u ) ,  P 2 { ( ^ ) ,  a n d  1 2 ( 0 ; )  a r e  t h e  F o u r i e r  t r a n s f o r m s  o f  y { t ) ,  x { t ) ,  < i ( < ) ,  P i ( < ) ,  h { t ) ,  

P2{t)i and <2(0 respectively. Throughout this dissertation, the analysis of an ultra­

sonic system is based on this LTI model. 

Research Objective and Approach 

The main motivation for this research comes from the need to find an NDE 

method for detecting hard alpha inclusions in titanium alloys. Hard alpha inclusions 

in titanium alloys are brittle regions of altered microstructure, usually caused by 

oxygen or nitrogen contamination. The brittleness of these inclusions can initiate 

cracks during manufacture or in-service use. These cracks may eventually lead to 

catastrophic failure of highly-stressed components, such as aircraft engine turbine 

disks (Costa et ai, 1990). Hence, it is important to be able to detect the hard 

alpha inclusions before the cracks form and grow. NDE techniques for hard alpha 

detection are currently fairly limited. Ultrcisonic methods for detecting hard alpha 

inclusions have relied upon finding cissociated defects such as voids or cracks. The 

ultrasonic contrast for regions of hard alpha is said to be very low. Hence, relatively 

sophisticated signal processing are needed to distinguish the flawed regions (Rose, 

1989; Ramabadran, 1990; Ramabadran et a/., 1991). 
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In order to solve hard alpha detection problem, two approaches were considered. 

One approach is to consider the flaw detection problem as a hypothesis testing prob­

lem. Based on this approach, a wavelet transform based signal processing method has 

been developed for ultrasonic flaw detection. The wavelet transform is a newly de­

veloped signal analysis tool that handles time-localized signals such as an ultrasonic 

flaw signal quite well. The other approach is to use material reflection coefficient 

sequence to distinguish hard-alpha inclusions and the host material. A Kalman filter 

based deconvolution algorithm has been developed to estimate the reflection coeffi­

cient sequence of a given test material. The main advantage of the Kalman filter 

approach is that it can be more readily applied to situations involving time-varying 

signals and non-stationary statistics and consequently has the potential to perform 

better under these situations than the Wiener filter approach. 

Research Summary and Contributions 

The first part of the dissertation is concerned with the application of the wavelet 

transform to ultrasonic flaw detection. The wavelet transform is a newly developed 

signal analysis tool that handles time-localized signals such as an ultrasonic flaw 

signal quite well. A wavelet transform based signal processing technique has been 

proposed which uses only partial knowledge of the flaw signal waveform that may be 

obtained from a reference experiment. The detection performance of the proposed 

technique is found to be comparable to that of the matched filter. Although the 

matched filter provides excellent performance, it requires exact knowledge of the flaw 

signal waveform and the noise autocorrelation function. Its eff'ectiveness diminishes 

if this exact knowledge is unavailable. The proposed technique based on the wavelet 
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transform can therefore be quite useful in situations where the flaw signal waveform 

is unknown or partially known. 

The second part of the dissertation describes a Kalman filter based deconvolu-

tion algorithm for ultrasonic signals and its application to material characterization. 

The Kalman filter based deconvolution algorithm is based on state-space modeling of 

the ultrasonic measurement system. Since the Kalman filter can handle time-varying 

systems and non-stationary statistics quite naturally, it is better suited for such sit­

uations than the Wiener filter approach. In applying the Kalman filter based decon­

volution algorithm, the deconvolved sequence is assumed white. However, material 

reflection coefficient sequences which are the deconvolved sequences in the present 

case are generally colored. A simple iterative scheme is proposed in this disserta­

tion for estimating such colored sequences. The Kalman filter based deconvolution 

algorithm is implemented in the time-domain and can be easily modified to handle 

space-varying systems. We investigate in this dissertation a model parameter inter­

polation method to handle such space-varying systems to incorporate the effect of 

ultrasonic attenuation. In this dissertation, a method is also developed for material 

characterization through processing of grain backscattered signals. The backscat-

tered ultrasonic signals are deconvolved and appropriate features are extracted from 

the deconvolved sequences for the purpose of material characterization. 

The contributions of this research are summarized below. 

• Wavelet transform based signal processing: A wavelet transform based signal 

processing technique has been developed for flaw detection. This technique 

does not require exact knowledge of the flaw signal waveform or the noise au­

tocorrelation function. The detection performance of the proposed technique is 
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found to be comparable to that of the matched filter. 

• Kalman filter based deconvolution: A Kalman filter based deconvolution algo­

rithm has been developed for ultrasonic signals and its application to material 

characterization. The main advantage of the Kalman filter is that it can handle 

time-varying signals and non-stationary statistics more easily. It is expected 

that the algorithm will be useful for different applications in the NDE area. 

• Colored input sequence estimation: A simple iterative scheme for estimating 

colored input sequence has been developed. The scheme uses the Kalman filter 

based deconvolution algorithm iteratively. It was observed that this scheme 

outperforms the straight Kalman filter deconvolution algorithm for a high-pass 

colored sequence. 

• Space-varying deconvolution: A model parameter interpolation method was 

investigated to modify the Kalman filter based deconvolution algorithm such 

that it can handle space-varying systems. It was shown that the method yields 

reasonably good results. 

• Material characterization and inclusion detection: A new technique for process­

ing grain backscattered ultrasonic signals and extracting useful features from 

them has been developed. The features show good potential for material char­

acterization and inclusion detection as well. 

Overview of Chapters 

Chapter 2 describes a wavelet transform based signal processing method for ul­

trasonic flaw detection. The performance of the proposed signal processing technique 
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is evaluated by means of a receiver operating characteristics (ROC) curve using sim­

ulated ultrasonic data and compared with the performance of the matched filter. 

Chapter 3 describes the application of the wavelet transform based signal process­

ing method to the hard-alpha detection problem. A statistical analysis of the grain 

noise signals is provided. The detection performance of the proposed signal process­

ing method is evaluated for the hard-alpha detection problem and compared with 

the performance of the matched filter. Chapter 4 describes the Kalman filter based 

deconvolution algorithm. It discusses a typical ultrcisonic measurement system and 

its signal/system model as an LTI system, and essential estimation theory for de­

riving the Kalman filter based deconvolution algorithm. Application examples of 

the Kalman filter approach are presented using simulated and actual measured ul­

trasonic data. Chapter 5 describes an iterative scheme for estimating colored input 

sequences. The colored system modeling and iterative scheme are described followed 

by simulation results using two different system models and four different shaping 

filters. Chapter 6 describes the space varying deconvolution problem. The use of a 

model parameter interpolation method is investigated to provide suitable correction 

for a space-varying system. The effectiveness of this approach is evaluated using 

experimentally obtained signals from copper samples of different thicknesses. Chap­

ter 7 describes a new method developed for material characterization and inclusion 

detection through processing of grain backscattered signals. Experimental results 

involving characterization of some pure titanium samples with different grain sizes 

are presented. Chapter 8 summarizes the work, presents conclusions, and describes 

future directions for this research. 
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CHAPTER 2. WAVELET TRANSFORM BASED SIGNAL 

PROCESSING 

This chapter describes a wavelet transform bcised signal processing method for ul­

trasonic flaw detection. The wavelet transform is a recently developed signal analysis 

tool that can provide a time-frequency description of a given signal. An engineer­

ing interpretation of the wavelet transform is a set of bandpass filters with different 

center frequencies and bandwidths. In the proposed signal processing method, the 

received ultrasonic signal is passed through several bandpass filters with different cen­

ter frequencies but with the same bandwidth. The magnitude peaks of the filtered 

signals are then used in the detection process. Two types of features are extracted 

from these peaks: (1) relative peak location and (2) magnitude ratio with respect to 

one of the filtered signals regarded as reference. The performance of the proposed 

method is evaluated using simulated ultrasonic data. It is shown that the detection 

performance achieved is close to that of the matched filter. 

In the following, an overview of the ultrasonic flaw detection problem and cur­

rent signal processing techniques for flaw detection are given. This is followed by a 

description of the matched filter technique which is an optimal filter if the flaw signal 

waveform and the autocorrelation function of grain noise are exactly known. The 

proposed wavelet transform based signal processing is then described. Under certain 



www.manaraa.com

13 

assumptions, the probability distributions of the selected features are derived. Fi­

nally, the performance of the proposed technique is evaluated by means of a receiver 

operating characteristics (ROC) curve using simulated ultrasonic data and compared 

with the performance of the matched filter. In this chapter, we develop the signal pro­

cessing method using simulated grain noise data. In the next chapter, the proposed 

method will be applied to actual grain noise data. 

Ultrasonic Flavir Detection 

When an ultrasonic wave is propagating through a material, it produces a scat­

tered wave by interacting with any defects in the material. It also produces a scattered 

signal due to material texture such as porosity, grain boundaries, and dislocations. 

This scattered signal is called background clutter or grain noise. Moreover, testing 

at high frequencies to increase resolution tends to amplify the grain noise. The grain 

noise reduces the signal-to-noise ratio (SNR) of the measured signal from flaws and 

results in unreliable detection, especially when the flaw size is small in relation to the 

size of the grains in the material. 

Time-averaging of the return echoes and correlation methods have been used 

conventionally to reduce the effects of backscattered noise (Furgason et ai, 1975; Lee 

and Furgason, 1981). The main objective of these techniques is to obtain a set of 

decorrelated grain noise signals by collecting the ultrasonic data from different loca­

tions of the transducer (spatial diversity). However, it is not possible to reduce the 

grain noise using these methods if the grain noise signals are correlated or enough 

sample signals are not available. An alternative signal decorrelation method uses 

frequency diversity. This technique called split-spectrum processing (SSP) was intro­
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duced by Bilgutay et al. in the late seventies and has been used for the purpose of 

SNR enhancement in ultrasonic signal detection (Bilgutay et al., 1979; Newhouse et 

a/., 1982). This technique suppresses the grain noise by using a number of bandpass 

filters the outputs of which are uncorrelated. For strong scatterers (such as fiat-

bottom holes), which possess higher reflectivity and a characteristic spectrum that is 

distinct from that of grain noise, this method has been shown to work well (Yue and 

Chong-Fu, 1987). For very weak flaw signals, this technique is very sensitive to the 

parameter settings which are usually difficult to obtain a priori in practice. 

A matched filter is a linear filter designed to provide the maximum signal-to-noise 

ratio at its output for a given signal waveform. It has been widely used in the area of 

communications for signal detection in noise. The effectiveness of the matched filter 

technique for ultrasonic flaw detection was studied by Chiou et al. (1993a, 1993b). 

This technique relied on a model-based technique which assumed the existence of a 

priori signal models. The detection performance of the matched filter is maximized, 

if the flaw signal waveform and autocorrelation function of additive noise are exactly 

known. However, its effectiveness diminishes if the flaw signal waveform and the 

noise autocorrelation function are not reasonably well known. 

Another approach to the detection of signals in noise is Fourier analysis or spec­

tral estimation. This technique works best if the signal to be detected has spectral 

features that clearly distinguish it from the noise. Its advantage over correlation and 

matched filter methods is its insensitivity to the shape or time of occurrence of the 

desired signal. It is not well adapted to the detection of time-localized signals whose 

exact waveform is unknown. The fundamental problem with ordinary spectral anal­

ysis is that the basis functions of Fourier analysis, viz., sinusoidal functions, extend 
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over infinite time and are therefore poorly matched to the short-time transients of 

interest. An obvious method for dealing with short-time or nonstationary signals is to 

use Fourier analysis with a sliding time window. This is referred to as time-windowed 

Fourier transform. A major disadvantage of the time-windowed Fourier transform is 

that the window function is fixed and therefore as the frequency is increased, more 

and more cycles are included inside the window; hence all frequency components of 

the signal are not treated in the same way by the time-windowed Fourier transform. 

Some of the problems of the time-windowed Fourier transform are avoided in 

the recently proposed wavelet transform (Morlet et ai, 1982; Morlet, 1983; Gross-

mann and Morlet, 1984). The wavelet transform technique is relatively new and has 

found applications in different fields such as image analysis, communication systems, 

biomedical imaging, radar, air acoustics, theoretical mathematics, control systems, 

and other signal processing areas. The advantage of the wavelet transform is its 

ability to use different windows at different frequencies. The wavelet transform looks 

at a given signal with high frequency resolution at lower frequencies and high time 

resolution at higher frequencies. Several ways of detecting transient signals using the 

wavelet transform are described in Tuteur (1988), Petropulu (1992), and Frisch and 

Messer (1992). 

Hypothesis Testing 

Mathematically, the received ultrasonic signal can be expressed as the summation 

of flaw and noise signals: 

x { t )  =  s { t )  +  v { t ) ,  (2.1) 
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where x { t )  represents the measured signal, s { t )  represents the flaw signal, and the 

noise is represented by v(i). In general, the signal s(f) is not completely known. The 

noise v{t) has zero mean and an autocorrelation function represented by R{i,j). It 

is not necessarily white or Gaussian. 

In statistics, the flaw detection problem is referred to as hypothesis testing and 

is described below. 

The null hypothesis HQ is the event that no flaw is present and the alternative 

h y p o t h e s i s  / f j  i s  t h e  e v e n t  t h a t  a  f l a w  i s  p r e s e n t .  B a s e d  o n  t h e  m e a s u r e d  s i g n a l  x { t ) ,  

we must choose between these hypotheses. Sometimes we can improve detection 

performance by processing the signal x{t) through a signal processing method such 

as linear or nonlinear filtering and signal correlation. In this case, the output of the 

signal processing, y{t), is called a test statistic. When the flaw signal waveform and 

the noise autocorrelation function are known, the optimal signal processing method 

is the well-known matched filter. Our primary goal in this research is to design a new 

signal processing method which does not require exact knowledge of the flaw signal 

waveform and the noise autocorrelation function. 

There are many criteria for making decisions using the test statistic y { t ) .  When 

HQ is true and we choose Hi instead, the resulting error is called false alarm. Simi­

larly, when HI is true and we choose HQ, the error is called miss. In the communi­

cations area, where both types of errors are assumed to be of equal importance and 

the a priori probabilities of the two hypotheses are known, the criterion of minimum 

error probability is generally used. In the NDE flaw detection problem, however, the 

HQ :  x { t )  =  v { t )  

H i  :  x { t )  =  s { t )  +  v { t )  

(2.2) 

(2.3) 
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Figure 2.1: Block diagram of an optimal detection system using matched filter 

a priori probabilities are difficult to determine. For such cases, the Neyman-Pearson 

criterion is widely used. Its objective is to maximize the probability of detection 

(POD) for a given probability of false alarm (POF). The POD and POF are defined 

as follows. 

POD = rfiiy)dy (2.4) 
JT] 

POF = rfo{y)dy, (2.5) 
Jt ]  

where r j  is the threshold used at the output of the system, i.e., if y { t )  >  r ] ,  we choose 

Hi, and /o(y) and fi{y) are conditional probability density functions of y under null 

and alternative hypotheses respectively. 

Signal Detection Using Matched Filter 

A block diagram of an optimal detection system using the matched filter is 

illustrated in Figure 2.1. The input signal is denoted by x(<) and the output signal 

by y{t). In applying a matched filter, the flaw signal 5(f) is assumed to be completely 

known which extends over the time interval (0, T). The autocorrelation function of 

the additive noise v{t) is also known. In the case of a matched filter, the processing 

i s  d o n e  b y  a  l i n e a r  f i l t e r .  T h e  t e s t  s t a t i s t i c  i s  t h e  o u t p u t  s a m p l e  a t  t i m e  T .  
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The generalized matched filter that maximizes signal-to-noise ratio for non-white 

noise can be derived as follows. The outputs of the filter at time T under null and 

alternative hypotheses are 

^^0= y { T )  =  Y , h { T - i ) v { i )  (2.6) 
i  

Hi : y{T) = '£ h{T - i)s{t) + x: Mr - •)"(»). (2.7) 
i  i  

where h { t )  is the impulse response of the matched filter. From Equations (2.6) and 

(2.7), the signal and noise components are easily identified as 

S { T )  = J 2 H T - i ) s { i )  (2.8) 
i  

N { T )  =  ^ h { T - i ) v i i ) .  (2.9) 
i  

The mean and variance of N { T )  are 

E { N { T ) )  =  . E { E M r - i W i ) }  
i  

=  ^ h { T - i ) E { v ( i ) ]  
i  

= 0 (2.10) 

V { N ( T ) )  =  E { £ H T - i ) h ( T - j ) v { i ) v U ) }  

h j  

=  ^ h i T - i ) h { T - j ) E { v { i ) v { j ) }  

h i  
=  ^ h { T - i ) h { T - j ) R { i , j \  (2.11) 

h J  

where R { i , j )  is autocorrelation function of v(i), E { - }  denotes expectation, and V {•} 

denotes variance. 

There are many definitions of an engineering parameter called signal-to-noise 

ratio (SNR) which is the ratio of the signal power to the noise power. Here, we define 
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it as the ratio of the peak signal power to the average noise power. This is expressed 

as 

SNR = . (2.12) 
\/V{JV(T)} 

at the filter output. The optimal filter that maximizes the SNR of the test statistic 

y{T) is the solution of the equation (Whalen, 1971), 

= (2.13) 
j  

Clearly, the determination of the optimal linear filter h { t )  through Equation (2.13) 

requires the knowledge of the flaw signal waveform and the autocorrelation function 

of the noise. If the noise signal v{t) is white Gaussian with unity variance, then its 

autocorrelation function R{i,j) is 

R { i , j )  =  S { i - j ) ,  (2.14) 

where S { i  —  j )  is Kronecker delta function which is equal to one if i  and j  are equal, 

and to zero in other Ccises. Then, the optimal filter that satisfies Equation (2.13) is 

h { t )  =  s { T - t ) .  (2.15) 

Equation (2.15) shows that the impulse response of the optimal filter for the white 

noise case is simply the known signal that is reversed in time. Thus, the filter is said 

to be matched to the signal. 

Detection Performance of Matched Filter 

The performance of the matched filter was tested using simulated ultrasonic 

signals which were generated by adding Gaussian noise to an actual ultrasonic flaw 
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signal. The flaw signal and an example of the simulated signal (flaw+noise) are shown 

in Figure 2.2. In testing the matched filter, the ultrasonic signal SNR was set at 10 

dB. 

As discussed in the previous section, the matched filter is a linear filter which 

maximizes the output signal SNR. So, if the matched filter input x{t) is Gaussian, 

the output y{t) is also Gaussian. The probability density functions of test statistic 

y{T) under the null and alternative hypotheses can be expressed as 

y ( T )  ~  N ( 0 , a ' ^ )  (2.16) 

H i - .  y ( T ) ~ N ( m , a \  (2.17) 

These conditional probability density functions of y { T )  under null and alternative 

hypotheses are shown in Figure 2.3. In Equation (2.17), the mean of the test statistic 

under the alternative hypothesis m is computed as 

= (2-18) 

i  

The detection performance of the matched filter can be evaluated in terms of 

the probability of detection and the probability of false alarm. Figure 2.4 shows the 

detection performance of the matched filter using the Neyman-Pearson detector. This 

figure showing the probability of detection versus the probability of false alarm with 

signal SNR as a parameter is referred to as the receiver operating characteristics 

(ROC) curve. The point plots were obtained experimentally using a Monte Carlo 

simulation (100 trials). 
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Figure 2.2: Simulated ultrasonic data: (a) flaw signal, (b) noise plus flaw signal 
(SNR = 10 dB) 
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Figure 2.4: ROC curves for matched filter 
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Wavelet Transform Based Signal Processing 

This section describes the wavelet transform and the proposed signal processing 

method for ultrasonic flaw detection. 

Wavelet transform 

The wavelet transform of a signal x { t )  is given by 

W x { a ,  b )  =  J  x ( t )  d t ,  (2.19) 

where the family of functions derived from i p { t )  through dilations and trans­

lations is referred to as wavelets and expressed as 

where the parameters a > 0 and b  are real. The function is called the mother 

wavelet and is typically localized in time t. It also satisfies the condition that 

f 7p{t)dt = 0. This means that ij;{t) has some oscillations. In fact, ip{t) can be 

viewed as the impulse response of a bandpass filter. The wavelets are useful in an­

a l y z i n g  a n y  a r b i t r a r y  ( s q u a r e  i n t e g r a b l e )  s i g n a l  x ( < ) .  T h e  t r a n s l a t i o n  p a r a m e t e r  b  

shifts the function ^>(0 the right (6 > 0) or the left (6 < 0) thereby permitting the 

analysis of different parts of x{t). The dilation parameter a compresses (a < 1) or 

expands (a > 1) the function tp{t) thereby permitting the analysis of x{t) at different 

scales or resolutions. If we interpret j/'(i) as the impulse response of a bandpass filter 

with center frequency uc, then values of a < 1 and a > 1 shift u)c to higher and lower 

v a l u e s  r e s p e c t i v e l y .  T h e  b a n d w i d t h  B  o f  t h e  f i l t e r  a l s o  c h a n g e s  ( i n v e r s e l y )  w i t h  a  

thereby maintaining a constant Q = udB oi the filter. 
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The wavelet transform of a given signal x { t )  is a mapping of x { t )  into a two-

dimensional function Wx{a,b), where the values of Wx{a,b) are obtained by per­

forming the inner products of a:(<) with the wavelets Using Wx{a,b), the 

signal x{t) can be expressed as a linear combination of the wavelets Thus, 

the wavelet transform permits a decomposition of x{t) in terms of the wavelets. If 

the mother wavelet satisfies some mild conditions, the parameters a and b need 

only take discrete values for the above decomposition to work. The discrete form of 

wavelet transform (2.19) can be obtained by restricting a, b to only discrete values: 

a = and b = where m and n are integers. In this case, we have a discrete 

wavelet transform (DWT) given by 

W x i m ,  n )  =  ~  " ^ o ) -  ( 2 - 2 1 )  
V ° 0  k  

Typical choices for oq and 6q are 2 and 1 respectively. Using these values for a  and 

6, the wavelets in Equation (2.20) can be expressed as 

"/"""'"(i) = -  n ) .  (2.22) 

The values W x { m , n )  are referred to as the discrete wavelet transform coefficients. If 

we consider the set of points in the (a, 6) plane at which the discrete wavelet transform 

is computed, viz., a = 2"^ and b = and associate the scale parameter a with 

the reciprocal of frequency and the translation parameter b  with time, we notice that 

the frequency resolution improves as the frequency decreases and the time resolution 

improves as the frequency increases. In fact, the orthonormal wavelet basis and the 

discrete wavelet transform provide a time-varying, octave-band frequency analysis of 

the given signal x(<). 
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The wavelet function must satisfy a number of restrictions. The most important 

are integrability and square integrability. Also the low-frequency behavior of 

must be such that 

(2.23) 
{Cl'I 

A 

where is the Fourier transform of and u is the frequency. This condition 
A 

implies that if V'(w) is a smooth function in the neighborhood of the frequency origin 

then ^(0) = 0, i.e., x/p{t) has no DC component. Additional assumptions are often 

made about wavelet functions for convenience. One such requirement is that ^(w) = 0 

for w < 0. It is also convenient to assume that ip{uj) is real for w > 0. Another 

requirement of wavelets is that they should be concentrated in the time and frequency 

domains as much as possible. This means that the time-bandwidth product for 

wavelets should be as small as possible. It is well known that the smallest time-

bandwidth product is achieved by the modulated Gaussian wavelet function. The 

modulated Gaussian wavelet is the function that is proposed by Morlet (Daubechies, 

1992). Its Fourier transform is a shifted Gaussian, adjusted slightly so that 0(0) = 0, 

0(u;) = [exp {-(w - wo)^/2} - exp (-u;2/2) exp (-u;§/2)] , (2.24) 

0(<) = 7r~l/^ [exp (-iwQi) - exp (-w§/2)] exp 2/2). (2.25) 

For ujQ > 5, the second term in Equation (2.25) is so small that it can be neglected 

in practice. The parameter wq is related to the center frequency of wavelet function. 

This function is shown in Figure 2.5 with various parameter values. 
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Proposed signal processing method 

The proposed wavelet transform based signal processing method is illustrated 

in Figure 2.6. The proposed signal processing method is motivated by the fact that 

one wide-band signal can be partitioned into many independent narrow-band signals, 

and these signals are statistically independent and can be used for output signal 

SNR enhancement. An engineering interpretation of the wavelet transform is a set 

of bandpass filters with different center frequencies and bandwidths. In the proposed 

signal processing method, the received ultrasonic signal x{t) is passed through sev­

eral bandpass filters with different center frequencies but with the same bandwidth. 

Figure 2.8 shows the magnitudes of filtered signals of the input signal shown in Fig­

ure 2.2 (b). The input signal was passed through three bandpass filters with center 

frequencies of 4, 6.35, and 8.7 MHz. In order to enhance the detection performance, 

some points which are less probable to be flaws than other points can be removed 

from the magnitudes of filtered signals. We assume that peak points are much more 

probable to be flaws than the other points. The magnitude peaks of the filtered 

signals are used in the detection process. Since the peak location of a flaw may be 

shifted due to additive noise, we may not get exact flaw location information from 

magnitude peaks and we may not even detect some flaws. By processing magnitude 

peaks, we can enhance the probability of detection at low probability of false alarm. 

This is very important because the probability that such a point is a flaw is very 

low in ultrasonic NDE. Figure 2.9 shows the magnitude peaks of the filtered signals 

shown in Figure 2.8. From the magnitude peaks of the filtered signal, two types 

of features are extracted: (1) relative peak location and (2) magnitude ratio with 

respect to one of the filtered signals regarded as reference. The center frequency of 
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Figure 2.6: Block diagram of wavelet transform based signal processing method 

the reference bandpass filter can be determined from a partial knowledge of the flaw 

signal waveform which may be obtained from a reference experiment. 

The detection scheme used in the proposed signal processing method is illus­

trated in the Figure 2.7. The detection method is based on hypothesis testing de­

scribed in the preceding sections. The main test statistics are the magnitudes of 

filtered signals with different center frequencies. The extracted features, relative 

peak location and magnitude ratio, are used to enhance the detection performance 

of the system. The scheme operates as follows. First, the magnitude vector of fil­

tered signals M is compared with a threshold r}. If the magnitude vector exceeds the 

threshold, it is decided that there is a flaw. If the magnitude does not exceed the 

threshold, the feature vectors, and F2 are tested and if both feature vectors are 
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Figure 2.7: Flow diagram of detection scheme 

within the thresholds rji and 172 respectively, it is decided that there exists a flaw. 

All other situations are flagged as no flaw. The thresholds rj, rji and 772 may be 

determined from reference experiments and a priori knowledge of the ultrasonic test. 

Comparison with split-spectrum processing (SSP) 

Split-spectrum processing (SSP) was introduced in the late seventies in an at­

tempt towards implementing frequency agility techniques used in radar for signal-to-

noise ratio (SNR) improvement of ultrasonic signals. The frequency diverse signals 

in ultrasound are produced by splitting the frequency spectrum of the received signal 
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Figure 2.9: Magnitude peaks of wavelet transformed signal 
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instead of transmitting signals at different frequencies as is the case in radar ap­

plications. The frequency diverse signals obtained by splitting the spectrum of the 

received signal are uncorrelated from one another. As a result, when these signals 

are processed using various algorithms, the SNR can be improved. 

The block diagram of the split-spectrum technique is shown in Figure 2.10. The 

split-spectrum technique obtains the spectrum of the received signal, x(<), by a fast 

Fourier transform (FFT), divides the spectrum into the desired number of bands by 

means of digital filtering, and finally inverse Fourier transforms each band to obtain 

the frequency diverse signal set. Filtering is usually accomplished by Gaussian-shaped 

windows that have a selectable bandwidth 6 and a fixed frequency spacing A/. The 

center frequencies of the resulting signals range within the half-power bandwidth of 

the transducer. The resulting set of frequency diverse signals are then processed 

to enhance flaw visibility. The frequency diverse signals obtained from the split 

spectrum technique are further processed using a variety of techniques such as linear 

averaging, nonlinear averaging, minimization and so on. 

The split-spectrum technique described above and the proposed signal processing 

technique using wavelet transform are similar in terms of signal processing algorithms. 

The main difference between the techniques is the signal which is used for flaw de­

tection. SSP technique uses the time-domain signal processed from frequency diverse 

signals for flaw detection. The proposed signal processing technique uses features 

extracted from the wavelet transformed signals. The wavelet transform based signal 

processing technique is much simpler to implement than the SSP technique, because 

the signal processing technique does not require the inverse wavelet transform. For 

very weak flaw signals, SSP technique is very sensitive to processing parameters such 
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as the number of filters used for the spectral splitting, the filter bandwidth, and 

the frequency separation between the adjoining filters. These parameters are usually 

difficult to obtain a priori in practice. The proposed signal processing technique is 

less sensitive to these parameters, because it uses several features which may have 

different sensitivities to different parameters. 

The performance of the proposed signal processing technique was evaluated by 

means of an ROC curve using simulated ultrasonic data and compared with the 

performance of the matched filter. Before we present the results, we justify the 

usefulness of the selected features, by deriving the probability distributions of the 

selected features under certain assumptions. 

Magnitude of wavelet transform 

Since the wavelet transform is a linear transform, if the input signal is Gaussian, 

the transformed signal is also Gaussian. The wavelet transform of the measured 

signal x(t) can be expressed as 

where (Rv,Iv) and {Rs-,Is) are the real and imaginary components of the wavelet 

transforms of noise and flaw signal respectively. 

System Performance Evaluation 

HQ:  Wx in )  =  Wv{n)  

= Rx) + jiv (2.26) 

H i  :  +  W v { n )  

=  { R s  +  R v )  +  j { I s  +  I v ) i  (2.27) 
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The probability density function under the null hypothesis can be determined as 

follows. If the noise is assumed Gaussian, the real and imaginary components of the 

noise wavelet transform, Rv and Iv, are also Gaussian with each having zero-mean 
e y  

and variance c r  .  If we assume that they are uncorrelated at any pcirticular instant, 

then, their joint density function is 

f { R v J v )  =  — ^ e x p  
ZTTO-' -2(T2 

(2.28) 

We now define a new variable which is the magnitude of the wavelet transform. 

M = (2.29) 

From Equations (2.28) and (2.29), the probability density function for M  can be 

d e r i v e d  a s  
M ( M'^\ 

/ 0 ( M )  =  ̂ e x p f - ^ j ,  M > 0 ,  ( 2 . 3 0 )  

which is the well-known Rayleigh distribution. 

In order to determine the probability density function under the alternative 

hypothesis, we denote the real and imaginary components of the wavelet transform 

of the flaw signal as 

R s  =  A c o s O ,  I s  =  A s i n O ,  (2.31) 

where A  and 0  are the magnitude and phcise of wavelet transform of flaw. Then the 

magnitude is 

M  = y(/icos0-hi?u)2 + (^sin0-h7t,)2. (2.32) 

Let us define the new variables 

Mx — A cos 0 -|- Ry^ ^ ^ (2.33) 
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For any given value of 6, both M x  and M y  are Gaussian variables and may be shown 

to be uncorrelated. Furthermore, for a given value of 6, the means and variances of 

Mx and My are 

E { M x }  =  A  c o s e  (2.34) 

E { M y }  =  A sine (2.35) 

V { M x }  = V { M y } = < T ' ^ .  (2.36) 

Then, the joint probability density function of M x  and M y  conditioned on the 6  is 

f { M x , M y )  =  ̂ e x p | - ^  [ { M x  -  A c o s O f  +  ( M y  - A sin 0)2] |. (2.37) 

From Equations (2.32), (2.33) and (2.37), the probability density function of the 

wavelet transform under the alternative hypothesis is 

/l(M) = ^ exp [-^ {m2 + a2)] /q (^) , (2.38) 

where 

= (2.39) 

is the modified Bessel function of the first kind of zero order. This density function 

is referred to cis Rician. It is sometimes called as the generalized Rayleigh. 

Two conditional probability density functions under the null and alternative 

hypotheses, fQ{M) and fi{M), are shown in Figure 2.11 when scale parameter m = 3 

and input signal SNR is 10 dB. Actually, fi{M) is a special case of /q^M) when 

i4 = 0. Figure 2.12 shows the POD performance using a single wavelet transform 

and the Neyman-Pearson detection criterion. The single wavelet transform shows 

worse detection performance than matched filter, because the wavelet transform did 

not use the complete flaw signal information as the matched filter did. 
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Relative peak location 

The relative peak location indicates the relative distance between the peaks of a 

transformed signal and the peaks of the reference signal. It is closely related to the 

phase shift of wavelet transformed signals in the frequency domain. The relative peak 

location is expressed as a random process and assumed to be Gaussian distributed. 

The probability density functions of peak locations under null and alternative hy­

potheses, foiP) and fi{P) are plotted in Figure 2.13. The probability density func­

tions were determined from simulated data and fitted into Gaussian functions. Figure 

2.13 shows that density functions of relative peak locations have common means and 

uncommon variances, and their most probable peak location is at P = 0. Figure 

2.13 shows that the relative peak location feature has extra information to distin­

guish the null and alternative hypotheses and can be used for detection performance 

enhancement. 

Magnitude ratio 

Another feature extracted from the magnitude peaks of the filtered signals is 

magnitude ratio. This is the ratio of reference magnitude to the magnitude of fil­

tered signal. The distribution of this feature can be determined by assuming that 

the magnitudes and phases of wavelet transforms are statistically independent. In 

the frequency domain, the wavelet transforms can be considered cis bandpass filters 

that have different center frequencies. If all wavelet functions do not overlap in the 

frequency domain, the magnitudes of the wavelet transforms will be independent and 

Rayleigh distributed as shown in the previous section, and phases will be uniformly 

distributed between 0 and 27r. 
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Figure 2.13: Probability density functions of relative peak location 

Under the null hypothesis, the magnitude ratio to the reference peak magnitude 

is expressed as a new random variable 

(2.40) 

where the two random variables X  and Y  are the reference magnitude and magnitude 

of the filtered signal. Because random variables X and Y are independent, their joint 

probability density is 

g{X,Y)^9l{X)g2{Y), (2.41) 

where the probability density functions 51 (X) and g2{Y) are Rayleigh distributions 

(2.42) 

(2.43) 
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We choose a second arbitrary variable as 

Z  =  X .  (2.44) 

Then, using Equations (2.40), (2.41) and (2.44), probability density function of R  is 

determined as 

Under the alternative hypothesis, the random variables X  and Y  are Rician dis­

tributed as shown in the previous section. 

where A \  and A 2  are wavelet transforms of flaw signal at different center frequencies. 

The probability density function of R under the alternative hypothesis can be solved 

from Equations (2.45), (2.46) and (2.47). The probability density functions of the 

magnitude ratio under null and alternative hypotheses, fQ{R) and fi{R) are plotted 

in Figure 2.14 for a given flaw signal and input signal SNR of 10 dB. Figure 2.14 

shows that the magnitude ratio feature has extra information to distinguish the null 

and alternative hypotheses and can be used for detection performance enhancement. 

Overall system performance 

The proposed wavelet transform based signal processing method was imple­

mented in software using MATLAB and tested using simulated ultrasonic data. In 

generating simulated data, an actual ultrasonic flaw signal was added to Gaussian 

random noise signals. In testing the proposed method, the ultrasonic signal SNR 

(2.45) 

(2.46) 

(2.47) 
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Figure 2.14: Probability density functions of magnitude ratio 

was set at 10 dB. The wavelet transform was carried out as the inner product of 

the input signal and the Gaussian wavelet function shown in Figure 2.5. The scale 

parameter m was fixed as 3 and the center frequencies were chosen as 4, 6.35, and 

8.7 MHz from the a priori knowledge of the flaw signal bandwidth and maximum 

energy frequency which may be obtained from a reference experiment. Figure 2.15 

shows the ROC curve of the proposed signal processing method. The proposed signal 

processing method shows very similar detection performance as the matched filter. 

When the POF is bigger than 0.03, the POD of the proposed method is a little lower 

than the POD performance of the matched filter. This occurs because the wavelet 

transform based signal processing loses some peaks of flaws during peak detection. 

This means we can not improve the POD by increasing the POF. However, in an 

actual application, the POF is very small and at this operating point, the wavelet 
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Figure 2.15: Comparison of ROC curves of wavelet transform based method and 
matched filter 

transform based signal processing method shows almost equal performance as that of 

the matched filter without using exact information about the flaw signal waveform. 
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CHAPTER 3. APPLICATION OF THE WAVELET TRANSFORM 

BASED SIGNAL PROCESSING METHOD TO THE HARD-ALPHA 

DETECTION PROBLEM 

In this chapter, we describe the application of the wavelet transform based signal 

processing method developed in the preceding chapter to the hard-alpha detection 

problem. Hard alpha inclusions represent brittle regions in titanium alloy materials 

that arise from high oxygen or nitrogen concentration. When components made of 

titanium alloy material, e.g. fan disks in aircraft engines, are subjected to stress, the 

hard-alpha inclusions may lead to cracks and the eventual failure of the components. 

Detection of these inclusions is therefore an important NDE problem. In order to 

study the effectiveness of the wavelet transform based signal processing method in 

solving the hard-alpha detection problem, two data sets were prepared. Because of 

the difficulty in preparing samples containing actual hard-alpha inclusions, the flaw 

signals were simulated. The grain noise signals, however, were obtained from an 

actual titanium sample. The detection performance of the wavelet transform based 

signal processing method was evaluated using the receiver operating characteristics 

(ROC), i.e., POD versus POF, curves. In the following, we first describe the two data 

sets. Next, a statistical analysis of the grain noise signals is provided. Finally, the 

detection performance of the proposed signal processing method is evaluated for the 
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hard-alpha detection problem and compared with the performance of the matched 

filter. 

Ultrasonic Data Sets 

Two sets of ultrasonic data were prepared for studying the hard-alpha detection 

problem (Chiou et a/., 1993a). Important details regarding these data sets are given 

in Table 3.1. The flaw signals for each data set was obtained theoretically using 

the Thompson-Gray measurement model (Thompson and Gray, 1982). This model 

incorporates in its calculations attenuation, beam spreading, interface transmission, 

and flaw scattering amplitude. The measurement system response is introduced in the 

model through a separate reference experiment. For simplicity, a spherical inclusion 

and a flat front surface (of the specimen) were assumed in the simulations. The grain 

noise data were measured from a typical Ti-6426 alloy block with moderate noise. 

Each signal in the data sets was obtained by adding the corresponding simulated 

flaw signal to the actual noise data at the appropriate location. More details about 

the data set generation can be found in Chiou et al. (1993a). In order to test the 

wavelet transform based signal processing technique for different SNR's, the flaw 

signals of data set 1 were obtained for three different inclusion sizes. Figures 3.1 

and 3.2 illustrate the flaw signals and a grain noise signal from data sets 1 and 2, 

respectively. 

Statistical Analysis of Noise Signals 

In order to understand and characterize the grain noise data, statistical analysis 

o f  t h e  d a t a  w a s  p e r f o r m e d .  W e  c o n s i d e r  t h e  u l t r a s o n i c  n o i s e  s i g n a l s  m e a s u r e d  a t  N  
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Figure 3.1: Flaw and noise signals of data set 1: (a) flaw size = 0.8 mm, (b) flaw 
size = 1 mm, (c) flaw size =1.2 mm, (d) noise signal 
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Figure 3.2: Flaw and noise signals of data set 2: (a) flaw signal, (b) noise si 
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Table 3.1: Descriptions of ultrasonic data sets 

Data set 
Description 1 2 
Number of signals in the data set 
Number of samples in each signal 
Inclusion signal 
Inclusion diameter (mm) 
Inclusion impedance difference 
Noise signal 
Average input SNR (dB) 
Transducer frequency (MHz) 
Transducer type 

5.82, -3.78, -2.21 
10 

simulated 
0.8, 1, 1.2 

planar 
0.25" dia. 

high 
real 

100 
1000 

focused 
0.5 "  d ia., F = 2" 

simulated 

231 
1000 

0.4 
low 
real 
-2 

5 

different positions, Uj(f) (i = 1,2, • • •, N ) ,  as different realizations of a noise random 

process. At a particular time t, v^{t) then represents a random variable whose ampli­

tude varies over the measurement position i. In general, ultreisonic noise decays with 

time, primarily due to attenuation and diffraction, and is therefore not time-invariant 

(Stanke and Kino, 1984). This can be shown by considering the mean and standard 

deviation as a function of time for the ensemble of signals. To compute the mean 

and standard deviation, each signal was divided into 20 segments with each segment 

containing 50 sample points. The mean for the j-th segment can be written as 

where N  is the total number of measurement positions. Also, assuming that the 

mean of each segment is zero, the standard deviation for the j-ih segment can be 

written as 

(3.1) 

(3.2) 
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Figures 3.3 and 3.4 show the mean and standard deviation of data set 1 and 2 for 

each segment as a function of time. The straight lines with zero ordinate value are 

shown only for reference purposes. The standard deviation of data set 1 which was 

measured using a planar transducer shows the decaying nature as expected. The 

standard deviation of data set 2 which was measured using focused transducer shows 

an obvious focusing effect as well as a decaying trend. 

The correlation functions of the noise signals were also plotted. The correlation 

function of the k-th signal shifted by r relative to the i-th signal can be written as 

where k  =  i  means the correlation of a signal with itself which is referred to as 

an autocorrelation function. Equation (3.3) is a normalized measure of the degree 

of correlation between two noise signals, and vj{t) (Brown, 1983). A sample 

average, P { T ) ,  can be determined by averaging over a number of signal combinations. 

where c = 0 specifies the average autocorrelation, and c = 1 specifies the average 

crosscorrelation between successive signals (i.e., 1 with 2, 2 with 3, etc.). Figures 

3.5 and 3.6 show the average autocorrelation and crosscorrelation (c = 1) functions 

of data sets 1 and 2 for 200 shifts in each direction. The autocorrelation plots show 

periodic time-correlations. Thus, the noise signals of data sets 1 and 2 are non-white. 

The crosscorrelation plots indicate that the the noise signals measured at adjacent 

measurement positions are uncorrected. 

(3.3) 

(3.4) 
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Figure 3.3: Mean and standard deviation of data set 1: (a) mean, (b) standard 

deviation 
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Figure 3.4: Mean and standard deviation of data set 2: (a) mean, (b) standard 
deviation 
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Figure 3.5: Correlation functions of data set 1: (a) autocorrelation function, (b) 
crosscorrelation function 
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Figure 3.6: Correlation functions of data set 2: (a) autocorrelation function, (b) 
crosscorrelation function 



www.manaraa.com

53 

As a final statistical analysis of ultrasonic noise, we consider the distribution 

associated with an ultrasonic noise signal. Since we have an ensemble of noise sig­

nals, two distributions associated with noise signals can be considered. That is, the 

d i s t r i b u t i o n  a s s o c i a t e d  w i t h  t h e  a m p l i t u d e  v a r i a t i o n s  a t  a  p a r t i c u l a r  t i m e  o v e r  N  

measurement positions and the distribution associated with a single noise signal (i.e., 

same measurement position but different time instants) can be compared to a Gaus­

sian distribution. One method of comparing the distribution of a noise signal with 

a Gaussian distribution is via a probability plot (Hahn and Shapiro, 1967; Shapiro, 

1990). A probability plot is particularly useful since it provides a visual compari­

son tool which may indicate what type of deviations from a Gaussian distribution 

exist. The basic idea of a probability plot is to plot ordered observation x^, versus 

the expected value of the ordered observation, E{xi}, where the expected value is a 

function of the sample size n, and the assumed distribution (in this case, Gaussian 

distribution). The expected value of i-th ordered observation Xj^ can be computed by 

where m x  and a x  are respectively the sample mean and standard deviation of x  and 

inverf(*) is inverse error function with the error function defined as 

If the sample size is very large and the assumed distribution is correct, the plot of 

xj versus E{xj] (i.e., the probability plot) will be a straight line. The probability 

plots of noise signal amplitudes for all the measurement points at particular time are 

shown in Figures 3.7 (a) and 3.8 (a) for data sets 1 and 2. The probability plots of a 

single noise signal {vi{t) for fixed i and t = 0.2 ~ 0.3 fis) are also shown in Figures 3.7 

(3.5) 

(3.6) 
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(b) and 3.8 (b) for data sets 1 and 2. While a limited number of points is available, 

the data fit the line well within the central regions for both cases, indicating that 

each type of noise is recisonably Gaussian. 

Application to Hard-Alpha Detection 

The wavelet transform based signal processing technique was implemented in 

software using MATLAB and tested using simulated ultrasonic data described in the 

preceding sections. In the first application example, the effect of SNR of ultrasonic 

data to the detection performance of the proposed signal processing technique was 

studied using data set 1 and 2. The effect of flaw shape change was studied in the 

second application example. In these applications, we assumed that the flaw signal 

waveform is partially known. The first step in applying this technique is to obtain 

the information about the flaw signal center frequency and bandwidth. Maximum 

energy frequency and bandwidth of the flaw signal are assumed to be available from 

the partially known signal waveform. The wavelet transform Wcis carried out as the 

inner product of the shifted and compressed wavelets and the input signal. 

The detection performance of the proposed signal processing technique in appli­

cation to the hard-alpha detection using simulated ultrasonic data was evaluated by 

means of an ROC curve and compared with the performance of the matched filter. 

In determining ROC curve for the matched filter, the flaw signal waveform and noise 

autocorrelation were assumed to be known exactly. Then, the optimal matched filter 

can be found as h{t) which satisfies 

^ h i T - j ) R { i J )  =  s { i ) ,  (3.7) 
j  
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Figure 3.7: Probability plots of data set 1: (a) v ^ { t )  for fixed t  and variable i ,  (b) 
s i n g l e  n o i s e  s i g n a l  ( f i x e d  i  a n d  v a r i a b l e  t )  
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where s { t )  is flaw signal, and R { i , j )  is the autocorrelation function of noise. The 

Neyman-Pearson criterion was used to compute the POD and POP or ROC curves 

of the detection method. The method of computing the performance curves is to 

start by assigning a value for the POP. This involves estimating a value of threshold 

rj that satisfies 

POF= rfo{y)dy. (3.8) 
JT) 

This threshold value rj is then used to compute the value of POD by 

POD= rfi{y)dy. (3.9) 
JT} 

Example 1 

In this example, we study the performance of the wavelet transform bcised signal 

processing method using data set 1 and 2. The flaw signals for each data set were 

obtained theoretically using the Thompson-Gray measurement model. To study how 

SNR affects the detection performance, three different flaw sizes were used to generate 

different SNR flaw signals for data set 1. The flaw sizes and their corresponding SNR's 

were 0.8, 1, 1.2 mm and —5.82, —3.78, —2.21 dB respectively. Each signal in the 

data sets was obtained by adding the corresponding simulated flaw signal to the 

experimentally obtained grain noise signal from a Ti-6426 alloy sample. 

The wavelet transform was carried out using parameters obtained from the par­

tially known flaw signal waveform. The Gaussian wavelet function shown in Figure 

2.5 was used as the basis function. The scale parameter m was fixed as 3 for both 

data sets. The center frequencies were chosen as 4, 6.35 and 8.7 MHz for data set 1 

and 4, 5.7 and 7.4 MHz for data set 2 respectively. Figures 3.9 and 3.10 show the 

wavelet transformed signals of data set 1 and set 2 for scale parameter m = 3 and 
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three different center frequencies. From the magnitude peaks shown in Figures 3.9 

(b) and 3.10 (b), two types of features are extracted: (1) relative peak location and 

(2) magnitude ratio with respect to one of the filtered signals regarded as reference. 

The reference filter is determined from the maximum energy frequency of the flaw 

signals. In this application, bandpass filters with center frequencies of 6.35 MHz and 

5.7 MHz are references for data sets 1 and 2. 

Figure 3.11 compares the ROC curves of the wavelet transform based method 

and the matched filter. The detection performance of the proposed signal processing 

method is very close to that of the matched filter for data set 1 for various SNR's. 

For data set 2, the detection performance achieved is worse than that of the matched 

filter. This is perhaps due to the fact that the proposed signal processing method 

which is based on frequency diversity does not perform very well when the bandwidth 

of the flaw signal is small as in the case of data set 2. 

Example 2 

The wavelet transform based signal processing technique is tested in this exam­

ple to detect inclusions that are not of spherical shape, because Thompson-Gray 

measurement model can not handle not spherical shape inclusions, perturbed inclu­

sion shapes are simulated through signal modeling equations which have modeling 

error. Second, fourth, and sixth order ARMA equations were used to generate per­

turbed flaw signals from data set 1 flaw signal of flaw size 1 mm. If we define signal 

SNR as the ratio of signal power to modeling error power, the SNR's of perturbed 

flaw signals using second, fourth, and sixth ARMA equations are 4.53, 14.02, and 

17.89 dB respectively. The generated flaw signals using ARMA equation are shown 
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Figure 3.11: Comparison of ROC curves of wavelet transform based method and 
matched filter: (a) data set 1, (b) data set 2 
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in Figure 3.12. 

The perturbed flaw signals were processed using wavelet transform parameters 

obtained from spherical shape flaw signal waveform. The scale parameter m was 

fixed as 3. The center frequencies were chosen as 4, 6.35 and 8.7 MHz, and center 

frequency of reference bandpass filter was 6.35MHz. Figure 3.13 shows the ROC 

curves of perturbed flaw signals. The results show that the wavelet transform based 

signal processing method is not very sensitive to the slightly perturbed flaw signals. 

The proposed signal processing method can be successfully applied to detect hard-

alpha inclusions without exact knowledge of flaw signal waveform. 
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Figure 3.12: Perturbed flaw signals: (a) SNR = 4.53 dB, (b) SNR = 14.02 dB, (c) 
SNR = 17.89 dB 



www.manaraa.com

64 

Time (Lisec) 
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Figure 3.13: ROC curves of perturbed flaw signals 
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CHAPTER 4. KALMAN FILTER BASED DECONVOLUTION 

In nondestructive testing of materials and components, ultrasonic backscattered 

signals are often encountered. The information carried by these signals forms the 

basis of several techniques used for flaw detection, flaw characterization, and material 

characterization. In some cases, the effect of the measurement system has to be 

removed from these signals in order to enhance their usefulness. A deconvolution 

algorithm that is commonly employed for this purpose is based on the Wiener filter. 

In this chapter, we investigate the use of an alternative deconvolution algorithm based 

on the Kalman filter. The signal and system modeling of ultrasonic measurement 

system is presented first, followed by the elements of estimation theory for deriving 

a Kalman filter based deconvolution algorithm. This chapter concludes with several 

experimental results of ultrasonic signal deconvolution using Kalman filter based 

deconvolution algorithm. 

Ultrasonic Signal and System Model 

In the deconvolution of an ultrasonic backscattered signal, the signal is modeled 

as the result of convolving the incident acoustic pulse with a signal that character­

izes the material (or flaw) and furthermore corrupting it with some additive noise. 
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Mathematically, this can be expressed 

z { k )  =  y { k )  +  v { k )  

=  p { k )  *  u { k ) v { k )  

k  
= P{ j M k - j )  +  v { k ) ,  

j=0 
(4.1) 

where k  is the time index, z { k )  is the observed backscattered signal, p { k )  is the refer­

ence pulse which represents the measurement system response, u{k) is the reflection 

c o e f f i c i e n t  s e q u e n c e  t h a t  c h a r a c t e r i z e s  t h e  m a t e r i a l  ( o r  f l a w ) .  I n  E q u a t i o n  ( 4 . 1 ) ,  y { k )  

represents the noise-free backscattered signal and v{k) is the additive noise compo­

nent which is typically sensor noise. The deconvolution problem is to estimate the 

reflection coefficient sequence u{k) with a knowledge of z{k) and p{k) and an estimate 

This approach is based on the linear system model shown in Figure 4.1 (a). An 

intuitive approach is to let the reference pulse p{k) be the input to the system and 

reflection coefficient sequence u{k) be the system impulse response. However, it is 

more convenient to model the known reference pulse p{k) as the impulse response 

of a finite-dimensional system and let u{k) be the input to the system as shown in 

Figure 4.1 (b). Based on this practical approach, the backscattered signal can be 

expressed by means of the following state-space equations: 

where x { k )  is the x 1 system state vector, F is the N  x  N  state transition matrix. 

of v { k ) .  

x.{k -f 1) = F x { k )  -t- Gu(^:) 

z { k )  =  y { k )  +  v { k )  

=  H x { k )  +  v { k ) ,  

(4.2) 

(4.3) 
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Figure 4.1: Signal models: (a) intuitive model, (b) equivalent model 
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Figure 4.2: Block diagram of state-space model 

G is the iV X 1 input matrix, and H is the I x  N  measurement matrix. In Equations 

(4.2) and (4.3), the matrices F, G, and H together describe the system and must 

be chosen such that the system impulse response s{k) approximates the reference 

pulse p{k) using the A''-th order ARMA (Auto Regressive Moving Average) system 

model. The system matrices in Equations (4.2) and (4.3) can be easily modified such 

that they can be time indexed. Thus, the state-space formulations (4.2) and (4.3) 

naturally allow for time (or space) varying systems (in this case, the reference pulse) 

and/or nonstationary statistics. The system equations (4.2) and (4.3) are illustrated 

in block diagram form in Figure 4.2. 

In the state-space formulation of an ultrasonic backscattered signal, the input 

u{k) and the measurement noise v{k) are assumed to be zero-mean, white noise 

sequences with respective variances of Q and R and to be mutually uncorrelated. 
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Mathematically, these assumptions are expressed as 

=  Q 8 { k - 3 )  

E { v { k ) v { j ) }  =  R 8 { k - j )  

E{u{k)v{j)] = 0, 

(4.4) 

(4.5) 

(4.6) 

where E { - }  is the expectation operator and S ( - )  is the Kronecker delta function which 

is equal to one if k and j are equal, and to zero in the other cases. 

In modeling the system, we employ the A'^-th order ARMA (Auto Regressive 

Moving Average) difference equation 

The 2 N  system coefficients, (a^-, i = 1,2, • • •, A'^), are chosen to minimize the av­

erage mean squared error between p{k) and the system impulse response s{k) over an 

appropriate time window. Given a system equation, several state-space realizations 

are possible, i.e., there are several choices for the system matrices F, G, and H. Using 

the controllable canonical form realization (Chen, 1984), the state-space equations 

realizing the system equation in (4.7) can be written as 

y { k )  +  a i y { k  - 1) -1- a 2 y { k  - 2) H h a j ^ y { k  -  N )  

= ^iu{ k  - l )  + - 2) -f . • • -H ^ j ^ u { k  -  N ) .  (4.7) 

0 1 0 0 

0 0 0 0 

F (4.8) 

0 0 0 1 

- O N - ^ N - l  ••• -"2 -"1 

iT 
G 0 0 0 1 (4.9) 
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H % /?Ar_i ••• 0 2  (4.10) 

Minimum-Variance Estimation 

In this section, we present elements of estimation theory that are essential for 

the development of a Kalman filter based deconvolution algorithm. The first step 

in the deconvolution problem is to obtain an estimate of the system vector x(A:) 

from the noise corrupted measurements z{k). Once we have such an estimate, we 

can obtain the estimate of u{k) that is linearly related to 'k{k) by means of linear 

transformations. 

Throughout this chapter, the notation x(A;|j) denotes the estimate of x at time 

k based on the measurements up to and including j-th, and x(fc|j) denotes the esti­

mation error, 

In terms of notation x(A:|j), three Ccises can be distinguished. When estimation time 

k is greater than measurement time j, i.e., k > j, x(A:|j) is an optimal predicted 

estimate of x(A:); when k = j, x(/:tj) is an optimal filtered estimate of x(A:); and 

w h e n  k  <  j ,  x ( / ; | j )  i s  a n  o p t i m a l  s m o o t h e d  e s t i m a t e  o f  x { k ) .  

In estimation theory, we choose x(/[:|j) in such a manner that some measure of 

x(/:|j) is minimized. Many different measures of error can be used, but the most 

common measure is the mean-squared error (Meditch, 1969; Van Trees, 1968). The 

information available to us is measurements z{k). Given these measurements, we have 

to find an estimate of x(/;|j) as a function of z{k) such that the mean-squared error 

J5j|x^(A:|j)x(A;|j)| is minimized. This is equivalent to minimizing the conditional 

x(&|;) = x(A:) - x(A:|i). (4.11) 
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mean-squared error, 

J[x(A:|i)] = E {k^ { k \ j )x{ k \ j ) \ z{ j ) } ,  (4.12) 

where z(j) = [ 2(1) z { 2 )  • • •  z ( j )  ] ^ •  The solution to this problem is given in 

Equation (4.13), which is known as the fundamental theorem of estimation theory 

(Mendel, 1983) 

x { k \ j )  = i;{x(fc)|z(i)}. (4.13) 

When x { k )  and z{ j )  are jointly Gaussian, the estimator that minimizes the mean-

squared error (4.12) becomes 

m i )  =  + Pxz(i,y)Pzz'o; j) . (4.14) 

where covariance matrices Pxz and Pzz are defined as 

Pxz(t,j) = iE{[x(i)-£{x(A:))][zO)-£{z(;)}]^} (4.15) 

PzzOJ) = £{[zO)-£{zO)}][zO)-iJ{z(j)}]^}. (4.16) 

Estimator (4.13) is true for all values of k  and j; hence, in principle, it can be used 

to provide optimal predicted, filtered, or smoothed estimates of x{k). This mean-

squared error estimator has important properties. It is unbiased and has minimum 

error variance. Thus, this estimator is a minimum-variance estimator. (It is also 

referred to as an efficient estimator.) 

Because our deconvolution problem is closely related to the filtered and smoothed 

estimates of x{k), we describe only filtered and smoothed estimates of x{k) in the 

next two sections. 
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Optimal filtering 

The object of optimal filtering is to find the minimum-variance estimates of 

x{k) based on the past and present measurements. A recursive minimum-variance 

optimal filtering algorithm was developed by Kalman and is known as the Kalman 

filter (Kalman, 1960; Kalman and Bucy, 1961). A very popular form of the Kalman 

filter algorithm to estimate the optimal filtered estimate x(A;|fc) is the following so-

called predictor-corrector formula (Meditch, 1969; Sorenson, 1980). 

Predictor 

x(A:|fc — 1) = Fx(A; — l|fc — 1) (4.17) 

P { k \ k  - 1) = FP(fc - life - 1)F^ -f Q G G ^  (4.18) 

Innovations 

l(/:|A; — 1) = 2(fc) — Hx(A:|fc — 1) (4.19) 

T) { k )  =  B . P i k \ k  -  1)H^ +  R  (4.20) 

Corrector 

K { k )  =  F{ k \ k - l )ll^TJ~ ' ^ { k )  (4.21) 

x { k \ k )  =  x { k \ k  - 1) -t- K(fc)2(jt|it - 1) (4.22) 

P { k \ k )  = [l - K(A:)H]P(A:|ifc - 1) (4.23) 

In these equations, x(A;|/;) and x(/:|A;—1) denote respectively the estimates of the state 

vector x{k) based on the measurements 2(0) through z{k) and ^(O) through z{k — 1). 

The corresponding estimation error covariance matrices are denoted respectively as 

P(A:|A:) and P(A:|fc — 1). In addition, z{k\k — 1) denotes the innovations process (also 

known as the measurement residual process or prediction error process), T]{k) denotes 
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z { k \ k  —  1) 

Innovations 
process 

z { k )  

Observed 
signal 

z { k \ k  —  1) 

x(fc|A;) 

x { k \ k  —  1) - 1  

K { k )  

Figure 4.3: Block diagram of Kalman filter 

its variance, and K(fc) is called the Kalman gain vector. 

The Kalman filter recursion is started by assuming suitable values for x(0|0) and 

P(0|0). The innovations process z{k\k — 1), the output of Kalman filter, will be used 

in the optimal smoothed estimation of x(fc). The block diagram of a Kalman filter 

which produces the innovations process is shown in Figure 4.3. 

Optimal smoothing 

The smoothing problem deals with estimates of x { k ) ,  x(A;|j) for k  <  j .  We can 

distinguish three types of smoothing; fixed-interval, fixed-point, and fixed-lag. The 

fixed-interval smoothing estimate is x(A:|Z(), where L is fixed measurement interval. 

The fixed-interval estimate of state vector x(fc) is bcised on all the available measure­

m e n t  d a t a  { z { i ) ,  i  =  1 , 2 ,  • •  •  , L ) .  T h e  f i x e d - p o i n t  s m o o t h e d  e s t i m a t e  i s  x { k \ k  +  / ) ,  

where k is fixed and / is varied. A fixed-lag estimate is x{k\k -f- /), where / is fixed 

and k is varied. Fixed-point and fixed-lag estimates usually do not make use of all 

data. On the other hand, fixed-interval smoothing estimate uses all measurement 
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data. Therefore, we cannot expect better estimation by other forms of smoothing 

than by fixed-interval smoothing. 

The recursive fixed-interval smoothing estimate and its error covariance matrix 

equations are given as follows: 

x(A:|I) = k i k \ k - l )  +  P x i k \ k - l ) r i k \ L )  (4.24) 

P x i k \ L )  =  P x { k \ k - l ) - P y : i k \ k - l ) S i k \ L ) P x { k \ k - l ) ,  (4.25) 

where k  =  L  —  1 ,  L  —  2 ,  -  •  •  , 1 .  The N  x  I  vector r { k \ L ) ,  called the residual state 

vector, and its N x N covariance matrix S(A;|L) are defined as 

r(fcli) = Px^(A;|A:-l)[x(ib|I)-x()fc|A:-l)] (4.26) 

S { k \ L )  =  E { r { k \ L ) r ' ^ { k \ L ) } .  (4.27) 

The residual state vector and its covariance matrix S(fc|Z() can be computed using 

the following backward recursive equations. 

r(A:|L) = [l-K(ifc)H]^F^r(ifc-j-l|I)-HH^7/-^(ifc)l(it|fc-l) (4.28) 

S{k\L) = [l-K(ifc)H]^F^S()fc-|-l|L)F[l-K(A:)H] 

+ H^rj-'^{k)n, (4.29) 

where k  =  L ,  L  —  1 ,  • • •, 1, r(L-M|L) = 0, and S(L-Fl|Z) = 0. In the above equations, 

the innovations process z{k\k — l), its variance T]~^{k), and Kalman filter gain vector 

K(fc) are available from Kalman filter calculations described in the previous section. 

Deconvolution Algorithm 

In the previous section, we pointed out that the goal of the deconvolution prob­

lem was to obtain the optimal estimates of reflection coefficient sequence u{k) from 
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the noisy measurements z { k ) .  We also obtained the optimal filtered and optimal 

smoothed estimates of state vector x{k). From the optimal smoothed estimate of 

x(fc), we can derive the optimal smoothed estimate of u{k). The optimal estimates 

of x(A:) and u(k) are seen to have the following relationship from Equation (4.2), 

From this equation, we can derive following fixed-interval smoother for u { k ) :  

In these equations, u { k \ L )  is the optimal (minimum-variance) fixed-interval smoothed 

estimate of u{k) and Pu(fc|I() is its smoothing error variance. The quantity r(A;|L) 

and its covariance matrix S(fc|Z() can be computed from Equations (4.28) and (4.29). 

Mendel has derived a two-pass fixed-interval algorithm from Equations (4.28), 

(4.29), (4.31), and (4.32) (Mendel, 1977a). During the first pass of the algorithm, 

data are processed in a forward manner by means of Kalman filter Equations (4.17)-

(4.23); the quantities K{k) and T]~^{k) are stored for use in the second pass, and the 

innovations process z{k\k — 1) is computed. During the second pass, a residual state 

vector r(A;|Z() and its covariance matrix S(A:|L) are generated in a backward manner 

from Equations (4.28) and (4.29), and finally the fixed-interval estimate u{k\L) and 

its error variance Pu(/;|Z') are computed from Equations (4.31) and (4.32). The flow 

diagram of Kalman filter based deconvolution algorithm is shown in Figure 4.4. 

G u { k \ L )  =  x(fc -1- 1 \ L )  -  Fx(fc|I). (4.30) 

= (3G^r(ife|i) 

P „ ( ( : | i )  =  Q  -  Q a ^ S { k \ L ) G Q  

(4.31) 

(4.32) 
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z { k )  

Forward recursion Smoothing filter 

Backward recursion 

z { k \ k  —  1) 
r ) { k )  

K { k )  

Kalman filter 

Assume 
x(0|0) = 0 

P(0|0) = 0 

Compute 

u{k\L) and Pu(it|I) 

Compute 

r(ifc | I )  a n d  S { k \ L )  

Compute 

K { k ) ,  x { k \ k )  
and P(A:|/i;) 

Compute 

x{k\k — 1) 
and P(^|A: — 1) 

Compute 

z{k\k — 1) 
a n d  T } { k )  

Figure 4.4: Flow diagram of Kalman filter based deconvolution algorithm 
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Table 4.1: System modeling performances of different order system models 

The deconvolution algorithm described in the previous section was implemented 

in software and tested extensively using simulated and actual ultrasonic data. In 

t h e s e  e x a m p l e s ,  t h e  s y s t e m  m o d e l  w a s  d e s i g n e d  b y  m a t c h i n g  i t s  i m p u l s e  r e s p o n s e  s { k )  

with a given reference pulse p{k) in the least squares sense. A nonlinear least square 

function in the MATLAB Optimization Toolbox (Grace, 1992) which implements 

the Levenberg-Marquardt algorithm was used for this purpose. It was found that 

the system order has a significant influence on the modeling accuracy. For instance, 

consider the reference pulse p{k) shown in Figure 4.5. This signal weis obtained 

experimentally by sampling signals from a 15 MHz transducer at a 100 MHz sampling 

rate. Second, sixth, and tenth order system models were designed to match this pulse. 

System modeling performances of different order system models are compared in 

Table 4.1. The impulse responses of these systems are shown respectively in Figures 

4.6, 4.7, and 4.8. The frequency domain representation (DFT) of the different signals 

are also shown in the figures. It is seen that the higher the model order, the better 

the approximation of its impulse response is to the given pulse. As a compromise, 

we have selected a sixth order model in this example. 

Model order Signal-to-noise ratio (dB) 
2nd 
4th 
6th 
8th 

10th 

5.239 
13.741 
20.933 
38.010 
40.375 

Application Examples 
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Figure 4.5: Reference pulse: (a) time-domain signal, (b) magnitude spectrum 
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Figure 4.6: Second-order system model: (a) impulse response, (b) magnitude spec­
trum 
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Figure 4.7: Sixth-order system model: (a) impulse response, (b) magnitude spec­
trum 
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Figure 4.8: Tenth-order system model: (a) impulse response, (b) magnitude spec­
trum 
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In many situations, it turns out that only the shape of the system impulse 

response is of importance and not its absolute magnitude. In this case, we can 

normalize the impulse response such that its energy is unity, i.e., 

= MS) 

Such a normalization makes the power in the (noiseless) output signal y { k )  equal to 

Q, the variance of the input u{k). Assuming that the observed backscattered signal 

z{k) has a high SNR in a certain section we can obtain an estimate of Q by 

calculating the power 

P z \ = - ^ T .  « /V = 0. (4-34) 
•''2I 

where is the number of samples in The choice of the window w^i depends 

on a number of factors: (1) it must enclose the signal of interest, (2) it must have 

enough sample points to provide a good estimate of (3) it must not be so long 

that signal attenuation becomes a significant factor, etc. Estimating the variance R 

of the observed noise is somewhat difficult. If there is a section where the 

signal y ( k )  is known to be quite small, then R  can be estimated by the expression 

Pz2 = 1^E « A. = (4.35) 
^ 2 2  10^2 

where N22 is the number of samples in 1^22- Otherwise, additional experiments 

may have to be performed or a trial-and-error technique may have to be employed 

to obtain an estimate of R. Notice that with Q and R estimated as above (using 

Equations (4.34) and (4.35)), the ratio Q/R = Py/Pv is nothing but the SNR of the 

o b s e r v e d  s i g n a l  z { k ) .  
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Example 1 

In this example, we study the performance of the deconvolution algorithm using 

synthetic data. The backscattered signal z{k) was first assumed to be the reference 

pulse p(A:) shown in Figure 4.5 (a). The result of the deconvolution u{k) when Q/R is 

10 dB is shown in Figure 4.9 (a). Ideally, the deconvolved signal must be an impulse 

with a flat spectrum corresponding to a single reflector in the path of the reference 

pulse. The actual signal u{k) differs from this ideal because of two reasons; (1) the 

system impulse response s{k) does not quite match the reference pulse p(fc), and (2) 

the SNR of the backscattered signal is not high enough at all frequencies. To study 

how SNR affects the performance, the deconvolution was done for two other values 

of Q/R. The results are shown in Figure 4.9 (b) and (c). The spectra of the different 

deconvolved outputs and that of z{k) (also s{k) in this case) are shown in Figure 4.9 

(d). It is observed that the effect of the deconvolution is essentially to flatten the 

spectrum of z{k) at those frequencies for which the SNR is high compared to the 

cissumed value of Q/R. 

The resolving capability of the deconvolution algorithm was studied next by 

using a backscattered signal z{k) generated by adding the reference pulse in Figure 

4.5 (a) with a delayed version of itself, the delay corresponding to 12 samples (0.12/zs). 

The reflected signal by double reflector and its deconvolved signal u{k) are shown in 

Figure 4.10 (a) and (b). The deconvolved signal u{k) indicates that the algorithm 

has done a good job of separating the two impulses. 
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Figure 4.9: Deconvolution of single reflector: (a) Q//E=10dB, (b) Q//E=13dB, (c) 
Q//2=20dB, (d) deconvolved signal magnitude spectra 
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Figure 4.9 (Continued) 
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Figure 4.10: Deconvolution of double reflector: (a) reflected signal, (b) deconvolved 
signal (Q//?=10dB) 
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Example 2 

The deconvolution algorithm is used in this example to deconvolve the backscat-

tered signal from a flaw to extract its impulse response. The data for the example 

were obtained using a diffusion bonded disk made of Ti-6A1-4V alloy with 5.08 cm 

radius and 2.54 cm thickness. The disk contained a 200 x 400 fim (semiaxes) oblate 

spheroidal cavity in the diffusion bond plane with the major axes parallel to the flat 

disk surfaces. A planar 10 MHz transducer with a radius of 0.635 cm was used in the 

experiment which was performed in a water immersion tank. The data were collected 

through L—^L backscattering measurements at normal incidence to the flat surface of 

the disk. The data corresponding to the reference pulse were obtained from the front 

surface reflection of the disk. Both the flaw-backscattered signal and the reference 

pulse were digitized at 100 MHz. Additional details of the experiment can be found 

in Thompson and Gray (1983). 

The flaw signal z { k )  and the reference pulse p { k )  are shown in Figure 4.11. 

The deconvolved signal is shown in Figure 4.12 (a). For comparison purposes, the 

deconvolved signal using a Wiener filter is shown in Figure 4.12 (b). It is observed 

that the performance of the algorithm is quite similar to that of the Wiener filter 

based algorithm. 

Example 3 

In this example, the algorithm is used to characterize a layered composite mate­

rial. The backscattered signal data for this example were obtained using a sample of 

graphite fiber reinforced epoxy resin composite. The sample was 1.27 cm thick and 

contained 100 layers with one layer at 90 degrees for every three layers at 0 degrees 
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Figure 4.11: Experimental flaw data: (a) flaw signal, (b) reference pulse 
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Figure 4.12; Deconvolution of flaw data: (a) deconvolved signal ( Q / E = 1 3 d B ) ,  ( b )  
deconvolved signal using Wiener filter algorithm 
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(0^/90 layup). A 20 MHz planar transducer with 0.318 cm radius was used in the 

experiment. The data were collected through backscattering measurements with the 

UT field normally incident on the flat surface of the sample. Both the sample and 

the transducer were immersed in a water bath and separated by a distance of about 

5 cm. The data corresponding to the reference pulse were obtained by replacing the 

composite sample with a fused-quartz scimple and measuring its front surface reflec­

tion. Both the reference pulse and the backscattered signal from the composite were 

digitized at 100 MHz. 

The reference pulse p { k )  and its spectrum are shown in Figure 4.13. A section 

of the backscattered signal z{k) and the magnitude spectrum of the backscattered 

signal are shown respectively in Figure 4.14 (a) and (b). The reflection coefficient 

sequence u{k) and its magnitude spectrum are shown in Figure 4.15. Figure 4.16 is 

the magnitude spectrum of the reflection coefficient sequence which was estimated 

by averaging the squared magnitude spectra corresponding to 20 different locations. 

The spectral peak at about 11.5 MHz can be easily related to the layer thickness 

(0.0127 cm) and the speed of ultrasound in the material (0.292 cm//zs). 
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Figure 4.13: Reference pulse measured from layered material: (a) time domain 
nal, (b) magnitude spectrum 



www.manaraa.com

93 

0.15 

0.1 

0.05 

1* 
< -0.05 

-0.1 

0 0.5 1.5 1 2 
Time (|xsec) 

(a) 

3-10  
'S 

S -20 

-30 

-40. 

Frequency (MHz) 

(b) 

Figure 4.14: Measured data from layered material: (a) time domain signal, (b) mag­
nitude spectrum 
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Figure 4.15: Deconvolution of measured data from layered material: (a) decon­
volved signal, (b) magnitude spectrum 
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Figure 4.16: Averaged magnitude spectrum of deconvolved data from layered 
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CHAPTER 5. COLORED SEQUENCE ESTIMATION 

The Kalman filter based deconvolution algorithm discussed in the previous chap­

ter assumes that the reflection coefficient sequence u{k) is white and provides a min­

imum variance estimate of this signal. This assumption, however, is not valid when 

processing grain backscattered data from materials to obtain an estimate of the cor­

responding reflection coefficient sequences. It is known that the scattered energy due 

to grains of a material increeises with frequency under the usual situation in which the 

wavelength of the ultrasonic pulse is large compared to the average grain diameter 

(Krautkramer, 1991). Thus the signal to be estimated, viz., the reflection coefficient 

sequence, is also frequency dependent (or colored) illustrating the need for developing 

algorithms to handle such situations. In this chapter, we propose a simple iterative 

scheme for this purpose (Yoon and Ramabadran, 1991). The colored system model­

ing of an ultrasonic signal is discussed first. After describing the proposed iterative 

scheme, some simulation results are presented. 

Colored System Model 

In the deconvolution of an ultrasonic backscattered signal, the signal to be esti­

mated is modeled as the input to a known system and assumed to be white. However, 

in the nondestructive characterization of materials using ultrcisonic techniques, the 
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material dependent reflection coefficient sequence is known to be colored. In order 

to estimate such a colored sequence, we model it as the output of a shaping (or col­

oring) filter excited by a zero-mean, white noise sequence. The shaping filter model 

equations are given by 

where w { k )  is the white noise input and subscript s  denotes the shaping filter. The 

matrices F^, G5, and Hs together describe the shaping filter and are not known 

initially. These are determined with the estimates of the shaping filter coefficients 

during iteration. In modeling an unknown shaping filter, we express the input-output 

relationship of the shaping filter by means of the M-th order AR (Auto-Regression) 

equation 

In Equation (5.3), the M  shaping filter coefficients, (7^-, i  =  1,2,---,M) are not 

known a priori. They are estimated iteratively by the scheme starting from initial 

values of O's. Using controllable canonical form realization of (5.3), the shaping filter 

matrices can be written as 

Xs(^;-|-1) = FsXs{k) + Gsw{k) 

u { k )  =  H s X s i k ) +  w { k ) ,  

(5.1) 

(5.2) 

u { k )  +  ' y i u { k  — 1) -1- 72w(̂  ~ 2) -j h ' ) ^ u { k  —  M )  =  w { k ) .  (5.3) 

0 1 0 0 

0 0 0 0 

F s  (5.4) 

0 0 0 1 

••• -72 -71 
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G s  =  

H s  =  

0  0  • • •  0  1  

••• -'̂ 2 -71 

(5.5) 

(5.6) 

We now have a cascade of two systems cis shown in Figure 5.1. The shaping filter 

is followed by the system modeling the measurement system. These two systems can 

be combined to form the augmented system described by the state-space equations. 

X a { k  +  1 )  =  F a X a ( f c )  +  G a i « ( f c )  

z { k )  =  H a X a ( A ; )  +  u ( A ; ) ,  

(5.7) 

(5.8) 

where the subscript a  denotes the augmented system. From system model equations 

(4.2), (4.3) and shaping filter equations (5.1), (5.2), the augmented state vector Xa{k) 

and the augmented system matrices Fa, Ga, and Ha are given by 

x(fc) 

^ s { k )  
X a { k )  = (5.9) 

Ga = 

Ha = 

F GHs 

0 Fs 

G 

G5 

H 0 

(5.10) 

(5.11) 

(5.12) 

Notice that the input to the augmented system is the zero-mean, white sequence 

w{k) which can be assumed to be uncorrelated with v{k). This is expressed as 

E { w { k ) w { j ) }  =  Q 6 { k - j )  

E { w { k ) v { j ) }  = 0. 

(5.13) 

(5.14) 
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Noise 

u(A:) 

Colored 

White 
u { k )  

w ( k )  Shaping filter System model 

L 

Augmented system 

Figure 5.1: Block diagram of augmented system 

In the deconvolution of an augmented system, the shaping filter is considered as 

part of the system and the system order is augmented to iV + M. The proposed iter­

ative scheme estimates the shaping filter coefficients (7^-, i = 1,2, • • •, M) iteratively 

using the Kalman filter based deconvolution algorithm. 

In order to estimate the colored input sequence, a simple iterative scheme is 

proposed. In this scheme, the system model was augmented with a shaping filter 

excited by a zero-mean white noise sequence. The shaping filter coefficients are 

initially not known and are estimated using Burg algorithm (Marple, 1987) at each 

iteration. Figure 5.2 shows a flow diagram of the iterative scheme which works as 

follows. Initially, the shaping filter coefficients are assumed to be zero which means 

that the shaping filter is essentially an identity system, i.e., u{k) = w{k). At the 

beginning of each iteration step, the augmented system is constructed. Next, the 

Kalman filter based deconvolution algorithm is used to estimate the white noise 

Iterative Scheme 
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sequence w { k ) ,  and subsequently the colored input sequence u { k ) .  The shaping filter 

coefficients for the next iteration are then computed from the current estimate of 

u{k] (ising the Burg algorithm. The iteration continues until the change in the values 

of the shaping filter coefficients is quite small. The estimate of u{k) at the last step 

is then used as the final estimate. 

Simulation Results 

The iterative scheme described in the previous section was tested using simulated 

data. The signal to be deconvolved z(k) was generated using two system models, viz., 

a second order and a sixth order model shown in Figure 4.6 and 4.7. These models 

were chosen to be minimum phase and their impulse responses were designed to 

approximate an experimentally obtained reference pulse shown in Figure 4.5. The 

energies of the impulse responses were normalized to be unity. The system input, 

i.e., colored sequence u{k), was obtained by passing a zero-mean, white, Gaussian 

noise sequence through a second order shaping filter. Two low pass filters LPFl and 

LPF2 and two high pass filters HPFl and HPF2 were used for this purpose. The 

AR coefficients of these filters are respectively given by (—0.8, 0.16), (—1.4, 0.49), 

(0.8, 0.16) and (1.4, 0.49). The frequency responses of the shaping filters and system 

models are compared in Figure 5.3. It is seen that LPF2 and HPF2 have more 

coloring effect than LPFl and HPFl. 

In deconvolving z { k )  obtained as above, it was assumed that the system model 

and the measurement noise variance were known exactly. Two deconvolution meth­

ods were employed, viz., the Kalman filter based minimum-variance deconvolution 

(MVD) algorithm described in Chapter 4 and the proposed iterative scheme. In the 
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Figure 5.2: Flow diagram of iterative scheme 
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Figure 5.3: Frequency responses of shaping filters: (a) LPFl (—0.8, 0.16) and HPFl 
(0.8, 0.16), (b) LPF2 (-1.4, 0.49) and HPF2 (1.4, 0.49) 
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case of the iterative scheme, the order of the shaping filter was taken to be two and 

the updating of the filter coefficients was terminated after 10 iterations. The results of 

deconvolution using the two methods, the MVD algorithm and the iterative scheme, 

are compared in terms of error variance in estimating u{k) expressed as a percentage 

of the variance of u{k). In this example, the results were averaged for 100 realizations 

of the colored noise sequence. The results of the deconvolution are shown in Table 

5.1. It is seen that the iterative scheme performs better than the MVD algorithm in 

general for a second order system model, low-pass colored noise, and strong low and 

high-pass colored noise (LPF2 and HPF2). Its performance, however, is worse for 

low SNR high-pass colored noise. 

It was observed that whenever the iterative scheme performed well, the coeffi­

cients of the shaping filter converged to values close to the ideal values, i.e., coefficient 

values of the filter used in generating the data. Similarly, poor performance of the 

scheme was typically accompanied by shaping filter coefficient values farther away 

from their ideal values. The changes in the shaping filter coefficients and error vari­

ances for the second order system are plotted in Figures 5.4, 5.5, 5.6 and 5.7, and 

those for the sixth order system are plotted in Figures 5.8, 5.9, 5.10 and 5.11 for the 

four different shaping filters, LPFl, HPFl, LPF2 and HPF2. We can see that the 

error variances are generally decreasing for high-pass filters. However, the error vari­

ances for low-pass filters are increcising when SNR is greater than 20 dB. The shaping 

filter coefficients are converging to some values for the low-pass filters even though 

SNR is very low. For high-pass filter cases, shaping filter coefficients are converging 

to the actual values very closely for high SNR, but for low SNR, the converged filter 

coefficients are completely different from actual values. 
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Table 5.1: Estimation error variances for different system models and shaping filters 

Error variances 
System Coloring SNR MVD Iterative Exact 
model filter (dB) algorithm scheme deconv. 

(%) (%) (%) 
10 27.23 21.50 21.64 

LPFl 20 14.40 8.90 9.35 
2nd 30 3.23 2.66 2.66 

order 10 71.84 85.84 42.38 
HPFl 20 18.32 5.50 5.25 

30 1.20 0.63 0.63 
10 30.86 32.19 30.25 

LPFl 20 21.94 19.73 20.12 
6th 30 22.70 14.28 15.08 

order 10 94.12 95.08 92.42 
HPFl 20 87.29 91.48 72.99 

30 55.45 43.06 27.61 
10 15.31 5.71 5.81 

LPF2 20 6.33 2.13 2.13 
2nd 30 1.64 0.90 0.85 

order 10 79.55 7.00 7.54 
HPF2 20 21.39 0.82 0.82 

30 1.02 0.10 0.10 
10 22.65 11.46 10.00 

LPF2 20 8.04 6.04 5.33 
6th 30 9.53 4.30 4.20 

order 10 99.84 99.51 65.45 
HPF2 20 92.60 93.11 18.61 

30 54.18 4.37 3.88 
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Figure 5.4: Change in coefficients and error variances for 2nd order system and 
LPFl; (a) AR coefficients (—0.8, 0.16), (b) error variances 
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Figure 5.5: Change in coefficients and error variances for 2nd order system and 
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CHAPTER 6. SPACE VARYING DECONVOLUTION 

In ultrasonic NDE of materials, deconvolution techniques are widely used to im­

prove time/space resolution, minimize spectral coloring, and compensate for differ­

ent experimental settings, e.g., transducer variations, pulser-receiver energy/damping 

settings, etc. The reference signal that is used for deconvolution is typically obtained 

as the front (or back) surface echo from a suitable sample under conditions identical 

to those used in acquiring the signal to be processed (deconvolved). When the signal 

to be processed is acquired from an attenuating medium, the effect of signal atten­

uation should be appropriately accounted for in the deconvolution technique. If the 

signal arises from a localized inhomogeneity as in the case of flaw scattered signals, 

this is easily accomplished by suitably modifying the reference signal; for instance, 

in the Wiener filter based deconvolution technique (Thompson and Gray, 1983), the 

frequency dependent attenuation corresponding to the flaw location is determined 

and incorporated into the reference signal spectrum. When the inhomogeneities are 

distributed throughout the material as in the case of grain backscattered signals, the 

correction for attenuation should vary along the depth of the material. A suitable 

deconvolution technique for incorporating such correction is based on the Kalman fil­

ter (Ramabadran and Yoon, 1991; Yoon and Ramabadran, 1992). In this technique, 

the reference signal and the signal to be processed are modeled respectively as the 
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impulse response of a system and the system output. The input to the system is the 

deconvolved signal that has to be estimated. The Kalman filter algorithm processes 

the data sequentially and its formulation allows the system parameters to change at 

each step. This property can be taken advantage of in providing varying amounts of 

correction for attenuation along the depth of the material. 

In this chapter, we investigate the use of a model parameter interpolation method 

to provide suitable correction for space varying attenuation (Yoon and Ramabadran, 

1993). System models (AR or ARMA) are first built for the front and back surface 

echoes obtained from a suitable sample. The parameters of these models are then 

interpolated to obtain models corresponding to intermediate depths. The impulse 

responses of the interpolated models represent the reference signals corrected for 

attenuation. The effectiveness of this approach is evaluated using experimentally 

obtained signals from copper samples of different thicknesses (1/4, 1/2, 3/4 and 1 

inches). 

Space Varying System Model 

In the Kalman filter based deconvolution technique, the signal to be processed, 

e.g., grain backscattered signal, is modeled as Equation (4.1). We can rewrite this 

equation in space varying form to get 

z { k )  =  y { k )  +  v { k )  

=  P k i j )  *  

k  
= - j )  + (6-1) 

j = o  
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where k  denotes the sample index, * denotes convolution, z { k )  is the measured signal 

to be processed, v{k) is the measurement noise, is the space varying reference 

signal, and u { k )  is the deconvolved signal to be estimated. If we regard P ]g{ j )  as the 

space varying model of a system and u{k) as the system input, the measured signal 

z{k) is just the system output y{k) corrupted by the additive noise v{k). Using 

state-space notation. Equation (6.1) can be expressed as follows: 

where ' x . { k )  is the A'^ x 1 system state vector, is the N  x  N  state transition matrix, 

Gj^ is the X 1 input matrix, and is the 1 x iV measurement matrix. The 

matrices Fj^, and Hjj, which describe the space varying system are determined 

from the space varying reference signal P}^{j)-

In the state-space formulation of an ultrasonic backscattered signal, the input 

u{k) and the measurement noise v{k) are assumed to be zero-mean, white noise 

sequences with respective variances of Q and R and to be mutually uncorrelated. 

Mathematically, these assumptions are expressed cis 

where £^{-} is the expectation operator and 6(-) is the Kronecker delta function. 

Two of the popular system models to describe a system are the ARMA (Auto-

Regressive Moving Average) and the AR (Auto-Regressive) models. The difference 

x(A;-|-l) = Ff,x{k) + Gi^u{k) 

z { k )  =  l l f , x { k )  +  v { k ) ,  

(6.2) 

(6.3) 

E { u ( k ) u { j ) )  =  Q i ( k - j )  

E { v ( h ) v ( j ) }  =  R S ( k ~ j )  

E{u{k)v{j)) = 0, 

(6.4) 

(6.5) 

(6.6) 
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equation relating the input and output of an A'^-th order ARMA model is given by 

y(j) + ̂ l,kyU - 1) + - 2) + • • • + (i -

= ^l,k^(j - 1) + - 2) + • • • + 0N,k^ij - •^)' (6-7) 

where j  is the sample index, k  is space index, and { a ^  ^ and /3j i  =  1,2,• • • ,iV) 

represent the space varying system parameters at space index k. These parameters are 

determined from the parameters of space invariant reference signals, pqO) PL^3)i 

by an interpolation method. The space-invariant reference signals pgO) 

are obtained from the front and back surface echoes, and the system parameters of 

these signals are chosen to minimize the average squared errors between PQ{j), Pj^U) 

and the system impulse responses a.t k = 0,L, i.e., y(j)'s when u(j)'s are the unit 

sample sequences. This is accomplished using a nonlinear least squares optimization 

technique, viz., Levenberg-Marquardt method. In z-transform notation, the system 

function of the ARMA model in (4.4) is represented by 

, . + • • • + 

- 1 + + • • • + ' 

The system matrices corresponding to the ARMA model in Equation (6.7) are realized 

in the controllable canonical form as follows: 

0 

0 

1 

0 

0 

0 

0 

0 

G; 

0 0 

• ^ N , k - ' ' N - l , k  

0 0 

0 1 

• ^ 2 , k  - ^l,k . 

0 1 

(6.9) 

(6.10) 
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%-l,A: ••• h,k J-

In the c a s e  of an AR system model, Equations (6.9), (6.10) and (6.11) are modified 

s o  t h a t  =  1  a n d  j f .  =  0  f o r  i  =  2 , Z , -  •  •  , N .  

Parameter Interpolation 

Suppose system parameters (a^^Q ^^^,0' ^ ~ 2, • • •, iV) and {oc^ j^ and 

i = 1,2, • • • ,iV) represent the parameters of the systems obtained respectively using 

the front and back surface echoes from a suitable sample as reference signals. The 

system model parameters at any intermediate depth k are then obtained by inter­

polation of these parameters. The interpolations corresponding to and are 

given by the following equations: 

+  (6-12) 

^ i , k  = l^i,0 + (6-13) 

for i = 1,2,..., A'^ and /(•) is used to control the type of interpolation, e.g., f { k / L )  =  

k/L corresponds to linear interpolation and f{k/L) = yjkjL corresponds to a non­

linear interpolation. 

If Equation (6.12) is used to interpolate q^- ^'s, the stability of the resulting sys­

tem cannot be guaranteed. To overcome this problem, we first convert the j^'s 

into an equivalent set of parameters 7^- j^'s called the PARCOR (Partial Correlation) 

coefficients. These coefficients are interpolated using Equation (6.12) and the result­

ing values are converted back to cij j^'s. Such an interpolated system will always be 

stable if the systems corresponding to k = 0 and k = L are stable. The procedure for 
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converting ^'s to 7^- j^.'s and vice versa is described below (Proakis and Manolakis, 

1988). Let {am(0? ^ = l,2,---,m and am(0) = 1} denote the coefficients of the 

denominator polynomial of an m-th order system function. The conversion of j^'s 

to 7^- j^'s proceeds as follows. First, set 

aj^{i) = ai^ki (6.14) 

Next, for m = A'^, A'^ — 1, • • •, 1, compute 

km=am("i), (6.15) 

and 

am_l(^) = ^ , (6.16) 

for t = 1,2, • • •, m — 1. Then the PARCOR coefficients 7^- ^ are given by 

= i = 1,2,---,M (6.17) 

Conversion of 7^ j^'s to j^'s is done as follows. First, set 

k,-=7i,^ z- = l,2,.-.,A^. (6.18) 

Next, for m = 1,2, • • •, A^, compute 

a m { m )  = km, (6.19) 

and 

a m { i )  =  am-l(0 + l<ma^_l(m - i ) ,  (6.20) 

for z = 1,2, • • •, m — 1. Then can be determined as 

= ®A^(Oi i = 1,2, •••,A^. (6.21) 
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The partial correlation coefficient satisfy the condition |km| < 1 for all m  =  

1,2, • • •, iV, if the system has all its roots inside the unit circle. So the interpolated 

system using partial correlation coefficients will always be stable. This property is 

also used to check the stability of an AR system and is known as Schur-Chon stability 

test (Proakis and Manolakis, 1988). 

In Chapter 4, we pointed out that the Kalman filter based deconvolution algo­

rithm can handle time (or space) varying situation very easily. This section describes 

the space varying form of this algorithm. The Kalman filter based deconvolution al­

gorithm consists of two steps. In the first step, the Kalman filter equations are used 

to extract the innovations z{k) from the measurements z{k). In the second step, 

the innovations z{k) are smoothed to obtain the minimum variance estimate u{k) of 

reflection coefficient sequence. The recursive Kalman filter equations are given below. 

Space Varying Deconvolution 

Predictor 

S i { k \ k  — 1) = Ff,_Y' k { k  — 1|/: — 1) (6.22) 

mk - 1) = Fi-lP(<= - 11*: - iwl-l + <3Gt-lGLl (6'23) 

Innovations 

z { k \ k  - 1) = z { k )  -  H } . x { k \ k  -  1) 

T ) { k )  =  H ^ , P ( i t | ^ '  -  1 ) H ^  - F  R  

(6.24) 

(6.25) 

Corrector 

K { k )  =  F { k \ k  -  l ) H ^ 7 ? - l ( i f c )  

^ k \ k )  =  x { k \ k  -1 )4-  K { k ) z { k \ k  -  1)  

(6.26) 

(6.27) 
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P i k \ k )  = [l-K(Jfc)HjP()t|^:- 1) (6.28) 

In these equations, x(A:|A:) and x(A:|/: — 1) denote respectively the estimate of the state 

vector x(fc) ba^ed on the measurements 2(0) through z{k) and ^(0) through z{k — 1). 

The corresponding estimation error covariance matrices are denoted respectively as 

P ( f c | f c )  a n d  P ( A : | &  —  1 ) .  A d d i t i o n a l l y ,  z { k \ k  —  l )  d e n o t e s  t h e  i n n o v a t i o n s  p r o c e s s ,  r ) { k )  

denotes its variance, and K(fc) is called the Kalman gain vector. 

The fixed-interval smoothing algorithm can be expressed as 

u i k \ L )  =  Q G l r i k \ L )  (6.29) 

Pu(A:|i:) = Q-QGlsik\L)Gi,Q. (6.30) 

In these equations, u { k \ L )  is the optimal (minimum-variance) fixed-interval smoothed 

estimate of u{k) and Pu{k\L) is its smoothing error variance. The quantity r(A:|Z-), 

called the residual state vector, is defined in Equation (4.26). The residual state 

vector and its covariance matrix S(A:|L) can be computed using the following recursive 

equations. 

r { k \ L )  =  [l-K(ll)Hj,]^Ffr(/t+l|i) + H^i)"^(/t)2(/t|*:-l) (6.31) 

S(k\L) = [l-K(J,-)Hj^Fjs(t+l|i)Fj[l-K(t)H;t) 

+ H[,-l(l-)Ht, (6.32) 

where A: = L, L — 1, • • •, 1, r { L  lIX) = 0, and S { L  l|i/) = 0. 

Experimental Results 

The effectiveness of the model parameter interpolation method was verified using 

experimentally obtained signals from copper samples of different thicknesses (1/4, 
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1/2, 3/4 and 1 inches). Front and back surface echoes obtained from the 1 inch thick 

sample were used to build the 14-th order ARMA models and 20-th order AR models. 

The parameters of these models were interpolated to obtain the system models and 

their impulse responses at depths of 1/4, 1/2 and 3/4 inches. These signals were then 

compared with experimentally obtained back surface echoes from the 1/4, 1/2 and 

3/4 inches thick copper samples. 

In obtaining the front and back surface echoes, a 15 MHz focused transducer 

(radius: 0.25 inches, focal length: 3.5 inches) was used and was adjusted to focus 

respectively on the front and back surfaces of the samples. The back surface echoes 

obtained from the samples were normalized by accounting for transmission and re­

flection coefficients and phase inversion. The front and back surface echo signals 

obtained from the copper samples and their frequency spectra are shown in Figure 

6.1. Figure 6.2 shows the interpolated signals and their frequency spectra using 14-th 

order ARMA models; Figure 6.3 shows the interpolated signals and their frequency 

spectra using 20-th order AR models. Table 6.1 compares the performances of the 

model parameter interpolation method using both AR and ARMA models with the 

performance of Wiener filter based method. The performance measure is the signal-

to-noise ratio (SNR) in dB computed using the actual (measured) back surface echo 

and the difference between the actual and interpolated signals. The nonlinear weight­

ing function used here is f{x) = y/x. In the Wiener filter based method, the spectrum 

of the attenuated signal Ff,{u)) is computed as 

F(,(a,) = (6.33) 

An estimate of the frequency dependent attenuation a(u;) in Equation (6.33) is ob-
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Table 6.1: Comparison of performances of model parameter interpolation method 
and Wiener filter method 

SNR 
Interpolation method 1/4" BS echo 1/2" BS echo 3/4" BS echo 

(dB) (dB) (dB) 
ARMA model 

Linear 8.48 4.93 4.46 
Nonlinear 8.16 6.58 4.46 

AR model 
Linear 5.28 4.62 5.86 
Nonlinear 7.43 7.70 5.70 

Wiener filter 
g = i% 5.57 2.78 4.10 
Q  =  0.1% 6.41 3.99 5.77 
Q  =  0.01% 6.63 4.20 6.02 

tained as follows: 

j - o ( u ) i  ̂ —  ( J  3 4 j  
|Fo(")|2 + O|fo(")lmax 

where respectively denote the spectra of front and back surface 

echoes, * denotes complex conjugate, and Q is a desensitizing factor that avoids 

division by zero. The performance of the Wiener filter method was computed for 

different values of Q (1%, 0.1%, 0.01%) as shown in Table 6.1. 

Both ARMA and AR system models with nonlinear interpolation yield reason­

ably good results. The parameter interpolation method is especially suited for use 

with a Kalman filter based deconvolution technique. 
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Figure 6.1: Measured signals from copper samples of different thicknesses: 
time-domain signals, (b) magnitude spectra 
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CHAPTER 7. MATERIAL CHARACTERIZATION USING 

KALMAN FILTER BASED DECONVOLUTION 

The use of grain backscattered ultrasonic signals for the estimation of grain size 

has been studied extensively (Beecham, 1966; Fay et ai, 1976; Goebbels and Holler, 

1980; Saniie and Bilgutay, 1986). Several techniques to process the grain backscat­

tered signals and extract information related to grain size have been reported in 

Saniie and Bilgutay (1986). In this chapter, we describe a new technique to pro­

cess these signals and extract features that can be used for material characterization 

(Yoon and Ramabadran, 1992). The technique consists of the three steps: decon-

volution, spectrum estimation, and feature extraction. The extracted features are 

related to the average scattered energy and the rate of change of scattered energy 

with frequency, both computed within the bandwidth of the ultrasonic transducer. 

The spectral features so extracted are influenced by the microstructural properties 

of a material pertaining to scattering, e.g., average grain diameter, and can be used 

in the characterization of these properties. 

In this chapter, we first examine the grain scattering process in some detail and 

then describe the signal processing steps. Experimental results involving character­

ization of some pure titanium samples with different grain sizes are next presented. 

The results include the effect of different spectral estimation methods and windows 
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sizes on the features. 

Grain Scattering 

The scattering of ultrasonic waves at the grain boundaries is influenced by sev­

eral factors such as grain anisotropy, grain orientation, grain geometry, average grain 

diameter, and frequency. The effect of grain scattering is best seen through the atten­

uation of an ultrasonic wave traveling through a material. The frequency-dependent 

attenuation coefficient a of a material can be expressed as 

a = aa -f- as, (7.1) 

where Oa is the absorption coefficient and as is the scattering coefficient (Kraut-

kramer, 1991). Attenuation due to absorption is relatively small and is caused by the 

direct conversion of ultrasonic energy into heat. The absorption coefficient is essen­

tially independent of the average grain diameter and varies linearly with frequency / 

over a wide range as given by 

aa = Ci/, (7.2) 

where Cj is a constant. 

The scattering coefficient, on the other hand, has different expressions depending 

on the relative values of the average grain diameter D and the acoustic wavelength 

A. In the Rayleigh region where \ > D, the scattering coefficient is expressed cis 

as = (7.3) 

In the stochastic region where X  k  D ,  the scattering coefficient is given by 

as = C3D/2. (7.4) 
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In the diffusion region where A < J9, it is given by 

as = C^D-^. (7.5) 

The constants C^i and C4 account for factors such as grain anisotropy, grain 

geometry, and grain orientation. From the above expressions for it can be inferred 

that the scattered ultrasonic energy as viewed through the frequency window provided 

by a (broadband) transducer will have different average values and different slopes 

(rate of change with frequency) depending on the material microstructure as shown 

in Figure 7.1. Features related to these quantities can therefore be quite useful for 

material characterization purposes. 

Signal Processing 

This section describes a new technique which was developed to process the grain 

backscattered signals and extract features that can be used for material characteri­

zation. This technique consists of the following three steps: (1) deconvolution of the 

backscattered signal to remove the effect of the measurement system, (2) estimation 

of the spectrum of the resulting reflection coefficient sequence, and (3) extraction of 

features from the spectrum related to the average scattered energy and the rate of 

change of scattered energy with frequency, both computed within the bandwidth of 

the ultrasonic transducer. The flow diagram of this signal processing technique is 

shown in Figure 7.2. 
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Figure 7.1; Frequency dependent scattered energies of different microstructures 
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Figure 7.2: Flow diagram of signal processing method 
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Deconvolution 

The grain backscattered signal obtained from a material sample is obviously 

colored by the measurement system response. Deconvolution of this signal with the 

help of a reference pulse (representing the measurement system response) allows us 

to obtain a signal which is dependent only on the material microstructure. The 

deconvolution algorithm used here was described in Chapter 4. 

Spectrum estimation 

Once the reflection coefficient sequence u { k )  has been estimated, its spectrum 

can be obtained using different methods (Kay and Marple, 1981; Marple, 1987). 

Two methods considered here are the periodogram (PER) method and the Auto-

Regressive (AR) method. In the periodogram method, the spectrum of a given se­

quence of L samples is computed eis follows. 

The periodogram method is computationally efficient, but provides a poor estimate 

when the data record is short, i.e., L is small. In the AR spectrum estimation 

method, the AR coefficients aj, i = 1,2, • • •, 9 are first computed, and the spectrum 

is estimated by 

^PER(/) = 

2 

(7.6) 
jk=0 

1 + £ 

(7,7) 

1 = 1 

The AR spectrum estimation method generally gives a better estimate when the data 

record is short. 
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Feature extraction 

After estimating the spectrum of the reflection coefficient sequence, two features 

are extracted from it, viz., jFq related to the average scattered energy, and Fj related 

to the rate of change of scattered energy with frequency. The values of these features 

are obtained by least-squares fitting a portion of the spectrum within the transducer 

bandwidth with respectively a zeroth order and a first order polynomial. 

Experimental Results 

The signal processing technique described in the previous section was imple­

mented in software: the deconvolution step was implemented through a C language 

program and the spectrum estimation and feature extraction steps were implemented 

through the MATLAB package. Backscattered signals were obtained from three pure 

titanium samples A, B, and C. These samples were prepared using powder met­

allurgy techniques starting from particles of different sizes. It is believed that the 

microstructures of these samples differ only in terms of their average grain diameters. 

The particle sizes used as well as the average grain diameters measured using three 

different methods are shown in Table 7.1. In the table, diameter is the average maxi­

mum grain diameter meeisured by hand, intercept is the average length of a randomly 

drawn line that intercepts the grain boundaries and is measured by hand, computer 

is the average length of a line which is inside the grain boundaries and is randomly 

drawn using Monte Carlo method by computer. A-scan data were obtained from each 

titanium sample at ten different locations using a 15 MHz focused transducer (radius: 

0.635 cm, focal length: 8.89 cm) inside a water immersion tank. The data were then 

digitized at a sampling frequency of 100 MHz. In obtaining the grain backscattered 
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Table 7.1: Particle sizes and average grain diameters of the titanium samples A, B 
and C 

Average grain diameter 
Sample Particle size Diameter Intercept Computer 

i f im)  i f im)  i f im)  (/xm) 
A 150 ~ 300 44.94 24.52 25.42 
B 125 ~ 150 39.05 30.26 20.48 
C 106 ~ 125 48.85 22.88 26.78 

data, the transducer was focused at the center of the samples. A reference pulse was 

obtained by focusing the transducer at the front surface of a sample. An experimental 

setup for measuring grain backscattered signal and reference pulse is shown in Figure 

7.3. In this setup, the waterpath Dw to focus transducer into the middle of sample 

is determined as 

Dw = F-Ds—, (7.8) 
V w  

where F is the focal length of transducer at water, Ds is the focused depth inside 

the sample, vw is the wave speed in water, and vs is the wave speed in the sample. 

Material characterization 

The processing of the backscattered signals for material characterization was 

accomplished as follows. An 8-th order ARMA (Auto-Regressive Moving Average) 

system model with its impulse response approximating the reference pulse was first 

built using a nonlinear least-squares fitting utility in the MATLAB Toolbox. The 

backscattered signals were then deconvolved to obtain the corresponding reflection 

coefficient sequences. A band-pass filter was next used to remove the DC and higher 

frequency components from the reflection coefficient sequences. The spectra of the 
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Figure 7.3: Experimental setup for measuring backscattered signal and reference 
pulse 
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reflection coefficient sequences were then estimated using both periodogram and AR 

methods. Using the frequency range from 5 to 15 MHz, the features FQ and Fj were 

finally extracted from these spectra. In estimating the spectra, different window sizes 

(L) and different AR model orders (q) were used. 

The results corresponding to an AR (10) model and window sizes of 350, 256, 

128 and 64 are shown in Figure 7.4. In this figure, the feature vector x = [ 

of distribution class i is assumed to have bivariate normal density function 

" —^-T79exp[-^(x-m,)^R^~^(x-m^-)], (7-9) 

where mean vector nij and covariance matrix are defined as 

(7.10) 

(7-11) 

The ellipses in the figure indicate contours of constant probability density func­

tions when the feature vectors corresponding to each sample were fitted with a two-

dimensional Gaussian distribution. The lengths of the major and minor axes of each 

ellipse represent twice the standard deviation (2cr) along the respective directions. It 

is seen that features FQ and Fj can distinguish between the three titanium samples 

even though the order of the samples along the FQ axis does not correspond to any of 

the orders of the average grain diameters indicated in Table 7.1. It is also seen that 

the three titanium samples are well separated in the feature space even when the 

window size used is relatively small. (Note: For titanium material and a 100 MHz 

sampling frequency, a distance of 1 mm corresponds to a window size L of about 32.) 

This suggests the possibility of using the features for flaw detection as well when the 

microstructures of the host material and flaw are different. 
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Table 7.2: Separability measure for different window sizes 

Method Number of samples 
L = m L = 256 L = 128 L = 64 

Periodogram 2.93 
3.25 
1.20 
3.72 
4.65 
5.15 

3.73 
2.34 
0.98 
2.07 
2.92 
3.81 

1.69 
1.47 
1.98 
2.69 
1.76 
2.21 

0.75 
0.51 
0.59 
0.83 
0.50 
1.07 

AR (2) 
AR (4) 
AR (6) 
AR (8) 
AR (10) 

In order to quantify the separation between the different distributions in the 

feature space, a separability mecisure J4 was used (Fukunaga, 1972; Parsons, 1987). 

This mecisure is defined as 

where the pooled intraclass covariance matrix W, and the interclass covariance ma­

trix B are defined as 

In Equation (7.14), m is the mean of m^- over all distribution clcisses. This is a 

measure of the ratio of the variance of the means of the different distributions and 

the mean of their variances. For different window sizes and different orders of AR 

model, this separability measure is listed in Table 7.2. It is seen that the separability 

generally increases with the AR model order q and that it decreases as the window 

size N decreases. 

(7.12) 

w = f;{Ri) (7.13) 

(7.14) 
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Figure 7.5: Basic concept of inclusion detection 

Inclusion detection 

The signal processing method was also applied for detecting an inclusion which 

has different microstructure from the host material. Figure 7.5 shows the basic con­

cept to distinguish between host material and inclusion, for example, nominal tita­

nium alloy and hard alpha inclusions (Costa et a/., 1990). The simulated ultrasonic 

data were generated by inserting an appropriate number of samples of the reflection 

coefficient sequence of the the inclusion within the reflection coefficient sequence of 

the host material, and convolving it with a reference pulse. In generating simulated 

data, we can distinguish three different combinations of host material and inclusion: 

A host material and C inclusion (A:C), B host material and C inclusion (B:C), A host 

material and B inclusion (A:B). As shown in Figure 7.4, the distance between the 

feature vector distributions of A;B combination is the closest and A:C combination 

the furthest. 

In the inclusion detection problem, we might select two hypothesis, viz. an 

inclusion is present or no inclusion is present. This is the binary hypothesis testing to 

Sample 



www.manaraa.com

140 

select null hypothesis {HQ), the event that no inclusion is present, or the alternative 

hypothesis (Hi), the event that an inclusion is present. Symbolically this can be 

written as 

HQ : X E Host material (7-15) 

Hi : X G Inclusion. (7-16) 

We assume that the feature vectors of null and alternative hypotheses follow a Gaus­

sian distribution. 

HQ: x~Ar(mo,Ro) (7.17) 

Hi: x ~ A'^(mi,Ri), (7.18) 

where mg, mj are sample means and Rq ,  Rj  are sample covariances of feature vec­

tors of host material and inclusion, respectively. In order to simplify the hypothesis 

testing, we assume that the parent population of feature vectors of the host mate­

rial and the inclusion has a covariance matrix that is the average of the covariance 

matrices of the host material and inclusion. Thus, we estimate R as 

R = i(Ro + Ri). (7.19) 

In this case, the covariance matrices are common under both hypotheses. Based on 

feature vector observation, we must choose between these hypotheses. One reasonable 

decision criterion for this problem is to choose that hypothesis which is most likely to 

have occurred based on feature vector observation. Using this criterion, the decision 

rule is to choose Hi if 

P{Ho\x) < (7.20) 
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and choose HQ otherwise, where P(J7^-|x) is the conditional probability that is 

true for the given feature vector x. This decision rule may also be expressed in 

terms of probability density functions. When P{HQ) is the a priori probability that 

hypothesis HQ is true, the decision rule may be rewritten using probability density 

functions: choose if 

H W .  PW „ 2 n  

and choose HQ otherwise. In Equation (7.21), the ratio pj^(x)/po(x) is of particu­

lar importance and is called likelihood ratio. It is frequently convenient to use log-

likelihood ratio which is the natural logarithm of the likelihood ratio. From Equation 

(7.9), the log-likelihood ratio is 

i(x) = 

= -^(x - mi)^R-l(x - mi) 4- i(x - mo)^R~^(x - IHQ) 

= (mi-mo)^R~^x-i(mi-l-mo)^R~^(mi-mo). (7.22) 

In Equation (7.22), the first term is the test statistic and is Gaussian distributed be­

cause it is a linear transform of the Gaussian distributed feature vector x. This func­

tion is also called the Fisher's discriminant function (Johnson and Wichern, 1988). 

y = (mi — mo)^R~^x (7.23) 

If we assume that host material and inclusion are equally probable (i.e., P{HQ) = 

1/2), then the classification rule yg is 

2 / 0  =  ^ ( " ^ 1 - ' " O ) -  ( 7 - 2 4 )  

Thus, we choose i/i if y > j/g and choose HQ if t/ < j/q* Figure 7.6 shows the 
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decision line determined from Equations (7.23) and (7.24) when host material is A 

and inclusion material is C with inclusion size of 4 mm. 

In the inclusion detection problem, the a priori probabilities and the cost of each 

kind of error are difficult to determine. For this case, the Neyman-Pearson criterion 

(Scharf, 1991; Whalen, 1971) is commonly employed. The objective of this criterion 

is to maximize the probability of detection (POD) for a given probability of false 

alarm (POF). The POD results from using different materials and different sizes of 

inclusion are shown in Figure 7.7 when POF is 0.1. As shown in Figure 7.4, the 

distance between distributions of material A and B is closest and A and C furthest. 

This agrees with the POD results. The results show good probability when size of 

inclusion is larger than 4 mm. 
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Figure 7.7: POD performances of different host materials and inclusions (POF=0.1) 
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CHAPTER 8. SUMMARY AND CONCLUSIONS 

A wavelet transform based signal processing method has been developed for ul­

trasonic flaw detection. The wavelet transform is a recently developed signal analysis 

tool that can provide a time-frequency description of a given signal. An engineering 

interpretation of the wavelet transform is a set of bandpass filters with different center 

frequencies and bandwidths. In the proposed signal processing method, the received 

ultrcisonic signal is passed through several bandpass filters with different center fre­

quencies but with the same bandwidth. The magnitude peaks of the filtered signals 

are then used in the detection process. Two types of features are extracted from these 

peaks: (1) relative peak location and (2) magnitude ratio with respect to one of the 

filtered signals regarded as reference. These features are also used in the detection 

process. The performance of the proposed method was evaluated using simulated 

ultrasonic data. In order to justify the usefulness of the selected features, the prob­

ability distributions of the features were derived under certain assumptions. The 

performance of the proposed technique was evaluated by means of a receiver operat­

ing characteristics (ROC) curve using simulated ultrasonic data and compared with 

the performance of the matched filter. It was shown that the detection performance 

achieved was close to that of the matched filter. 

The wavelet transform based signal processing method has been applied to the 
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hard-alpha detection problem. Hard alpha inclusions represent brittle regions in 

titanium alloy materials that arise from high oxygen or nitrogen concentration. When 

components made of titanium alloy material, e.g. fan disks in aircraft engines, are 

subjected to stress, the hard-alpha inclusions may lead to cracks and eventual failure 

of the components. Detection of these inclusions is therefore an important NDE 

problem. In order to study the effectiveness of the wavelet transform based signal 

processing method in solving the hard-alpha detection problem, two data sets were 

prepared. Because of the difficulty in preparing actual hard-alpha inclusions, the 

flaw signals were simulated using the Thompson-Gray measurement model. The 

grain noise signals, however, were obtained from an actual titanium sample. In order 

to understand and characterize the grain noise data, statistical analysis of the data 

was performed. The detection performance of the wavelet transform based signal 

processing method was evaluated using the receiver operating characteristics (ROC), 

i.e., POD versus POF, curves. It was found that the detection performance of the 

proposed signal processing method is comparable to that of the matched filter. 

A Kalman filter based deconvolution algorithm has been developed for estimat­

ing material reflection coefficient sequence. The Kalman filter based deconvolution 

algorithm is based on the state-space modeling of the ultrasonic measurement system. 

Since the Kalman filter can handle time-varying systems and non-stationary statistics 

quite naturally, it is better suited for such situations than the Wiener filter approach. 

The developed deconvolution algorithm was implemented in software using C and 

MATLAB programming language and tested extensively using simulated and actual 

ultrasonic data. The algorithm showed good resolving capability in test using single 

and double reflectors. Deconvolution performances of the Kalman filter and Wiener 
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filter based approach were compared using actual data measured from a titanium 

alloy sample. The algorithm was used to characterize a layered composite material. 

From the spectral peak of deconvolved signal, the layer thickness was easily identified 

by removing measurement system response. It is expected that the algorithm will be 

useful for different applications in the NDE area. 

In applying the Kalman filter based deconvolution algorithm, the deconvolved se­

quence is typically assumed white. However, material reflection coefficient sequences 

which are the deconvolved sequences in the present case are generally colored. In or­

der to handle this situation, a simple iterative for estimating colored input sequence 

using Kalman filter based deconvolution algorithm has been developed. In the iter­

ative scheme, the colored input sequence is modeled as the output of shaping filter 

excited by white noise sequence. The shaping filter is considered as part of the system 

while applying the Kalman filter based deconvolution algorithm to estimate the noise 

sequence. To begin with, the shaping filter is just an identity filter. The estimated 

input sequence is then used to update its coefficients iteratively until the change in 

the coefficient values is small. The iterative scheme was tested using simulated data. 

The signal to be deconvolved was generated using two system models, viz., a second 

order and a sixth order model. The shaping filter was modeled as a second order 

AR model. Four different shaping filters which have different shaping effects were 

chosen for testing. Using simulated data, the deconvolution performance of the iter­

ative scheme and the Kalman filter bcised minimum-variance deconvolution (MVD) 

algorithm were compared. It was seen that the iterative scheme performs better than 

MVD algorithm in general for second order system model, low-pass colored noise. 

In deconvolution of ultrasonic signals acquired from an attenuating medium, the 
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effect of signal attenuation should be appropriately accounted for in the deconvolution 

technique. If the signal arises from a localized inhomogeneities as in the case of flaw 

scattered signals, this is easily accomplished by suitably modifying the reference 

signal. When the inhomogeneities are distributed throughout the material as in the 

case of grain backscattered signals, the correction for attenuation should vary along 

the depth of the material. A suitable deconvolution technique for incorporating such 

correction is based on the Kalman filter. The Kalman filter based deconvolution 

algorithm is implemented in the time-domain and can be easily modified to handle 

space-varying systems. A model parameter interpolation method to handle such 

space-varying systems to incorporate the effect of ultrasonic attenuation has been 

proposed. In this technique, the reference signal and the signal to be processed are 

modeled respectively as the impulse response of a system and the system output. 

The input to the system is the deconvolved signal that has to be estimated. The 

Kalmcin filter algorithm processes the data sequentially and its formulation allows 

the system parameters to change at each step. This property can be taken advantage 

of in providing varying amounts of correction for attenuation along the depth of the 

material. A model parameter interpolation method to provide suitable correction for 

space varying attenuation was investigated. System models (AR or ARMA) were 

first built for the front and back surface echoes obtained from a suitable sample. The 

parameters of these models were then interpolated to obtain models corresponding 

to intermediate depths. The impulse responses of the interpolated models represent 

the reference signals corrected for attenuation. The effectiveness of this approach 

was evaluated using experimentally obtained signals from copper samples of different 

thicknesses (1/4, 1/2, 3/4 and 1 inches). It was shown that the backscattered signals 
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estimated using the model parameter interpolation method were very close to those 

signals estimated using Wiener filter. 

A new signal processing technique to process the grain backscattered signals 

and extract features that can be used for material characterization has been devel­

oped. The technique consists of the following three steps: (1) deconvolution of the 

backscattered signal to remove the effect of the measurement system, (2) estimation 

of the spectrum of the resulting reflection coefficient sequence, and (3) extraction of 

features from the spectrum related to the average scattered energy and the rate of 

change of scattered energy with frequency, both computed within the bandwidth of 

the ultrasonic transducer. The spectral features so extracted are influenced by the 

microstructural properties of a material pertaining to scattering, e.g., average grain 

diameter, and can be used in the characterization of these properties. The features 

were applied to the characterization of some pure titanium samples with different 

grain sizes. The features show good potential for material characterization and flaw 

detection as well. The signal processing technique was applied for detecting an in­

clusion which has different microstructure from the host material. The test results 

using simulated ultrasonic data showed good detection performance when inclusion 

size is larger than 4 mm. 
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